K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Cho tam giác nhọn ABC (AC<AB).Vẽ đường cao AH.Gọi E,F theo thứ tự là hình chiếu của H lên AB,AC                                                                         a)Biết BH=3cm; AH=4cm.Tính AE và góc B (làm tròn đến độ)                                                                                                                                                 b)CM: AC2 + BH2=HC2 + AB2                                                                     ...
Đọc tiếp

Cho tam giác nhọn ABC (AC<AB).Vẽ đường cao AH.Gọi E,F theo thứ tự là hình chiếu của H lên AB,AC                                                                         a)Biết BH=3cm; AH=4cm.Tính AE và góc B (làm tròn đến độ)                                                                                                                                                 b)CM: AC2 + BH2=HC2 + AB2                                                                                                                                                                                                             c)Nếu AH=BH2 + HC2 thì tứ giác AEHF là hình gì? Lấy I là trung điểm BC, AI cắt EF tại M.CM: tam giác AME vuông                                                                   d)CM: \(SABC = {SABC \over sin^2C.sin^2B}\)

0
19 tháng 4 2023

Xét tam giác ABC và tam giác DEC có :
AC = CD ( gt )

BC = CE ( gt )

\(\widehat{ACB}=\widehat{DCE}\) ( đối đỉnh ) 

=> \(\Delta ABC=\Delta DEC\left(c.g.c\right)\)

\(AB^2=AH^2+BH^2\)

\(AB=12^2+5^2=169\)

\(AB=\sqrt{169}=13\left(cm\right)\)

▲AHC vuông tại H ta có:

HC\(^2\)=\(AC^2-AH^2\)=\(20^2-12^2\)=256

\(\)Chu vi ▲ABC là:

AB+BC+AC=AB+BH+HC+AC=\(13+5+16+20=54\left(cm\right)\)

 

17 tháng 2 2022

Tham khảo: 

Tam giác AHC vuông tại H nên :

AC2 = AH2 + HC2

202 = 122 + HC2

=> HC2 = 202 - 122

HC2 = 400 - 144 = 256 = 162

=> HC = 16 cm

Ta có : BC = HC + HB = 16 + 5 = 21 cm

Tam giác ABH vuông tại H nên :

AB2 = AH2 + HB2

AB2 = 122 + 52

AB2 = 144 + 25 = 169 = 132

=> AB = 13 cm

Vậy chu vi tam giác ABC là :

AB + AC + BC = 13 + 20 + 21 = 54 (cm)

Cho tam giác ABC nhọn (AB < AC) . Các đường cao AD, BM, CN của tam giác ABC cắt nhau tại H. Gọi O là trung điểm của BC, E là điểm đối xứng của H qua O. Kẻ CF vuông góc với BE tại FCho tam giác ABC nhọn (AB < AC) . Các đường cao AD, BM, CN của tam giác ABC cắt nhau tại H. Gọi O là trung điểm của BC, E là điểm đối xứng của H qua O. Kẻ CF vuông góc với BE tại F. Gọi K,L, R lần lượt là chân đường vuông góc kẻ từ N...
Đọc tiếp
Cho tam giác ABC nhọn (AB < AC) . Các đường cao AD, BM, CN của tam giác ABC cắt nhau tại H. Gọi O là trung điểm của BC, E là điểm đối xứng của H qua O. Kẻ CF vuông góc với BE tại FCho tam giác ABC nhọn (AB < AC) . Các đường cao AD, BM, CN của tam giác ABC cắt nhau tại H. Gọi O là trung điểm của BC, E là điểm đối xứng của H qua O. Kẻ CF vuông góc với BE tại F. Gọi K,L, R lần lượt là chân đường vuông góc kẻ từ N đến AC, AD, BC. Gọi giao điểm của DM và CN là S. CMR:
1. Ba điểm K, L, R thẳng hàng
2. HN.CS=NC.SH
3. Tia phân giác của góc BAC cắt BC tại I, kẻ đường thẳng đi qua C và vuông góc với đường thẳng Al tại P, đường thẳng CP cắt đường thẳng AO tại Q. Gọi G là trung điểm của đoạn thẳng IQ. CMR: đường thẳng PG đi qua trung điểm của đoạn thẳng AC
0

a) Xét ΔAEC vuông tại E và ΔADB vuông tại D có 

\(\widehat{BAD}\) chung

Do đó: ΔAEC\(\sim\)ΔADB(g-g)

1 tháng 4 2021

Giupps vs

18 tháng 2 2020

P/S 3 chữ hoa liên tiếp là góc :D

a,Ta có :\(AD//BC=>DAC=BCA\)

Xét Tam giác ABC và tam giác CDA

\(BC=DA\)(gt)

\(BCA=DAC\)(cmt)

\(CA\)cạnh chung

\(=>\Delta ABC=\Delta CDA\left(c-g-c\right)\)

b,Ta có : \(AD//BC=>ADB=CBD\)

Xét tam giác ABD và tam giác CDB

\(BC=AD\)(gt)

\(ADB=CBD\)(cmt)

\(BD\)cạnh chung

\(=>\Delta ABD=\Delta CDB\left(c-g-c\right)\)

c,Xét tam giác ODA và tam giác OBC

\(DBC=BDA\)(cm câu b)

\(AD=BC\)(gt)

\(DAC=ACB\)(cm câu a)

\(=>\Delta ODA=\Delta OBC\left(g-c-g\right)\)