K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2017

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Nối AK, ta có:

AB // HK (giả thiết)

⇒ ∠(A1 ) =∠(K1 ) (hai góc so le trong)

+) Lại có: AH // BK (giả thiết)

⇒ ∠ (A2 ) = ∠(K2 ) (hai góc so le trong)

Xét ΔABK và ΔKHA, ta có:

∠(A1 ) =∠(K1 ) ( chứng minh trên)

AK cạnh chung

∠(K2 ) =∠(A2 ) (chứng minh trên)

Suy ra: ΔABK =ΔKHA (g.c.g)

Vậy: AB = KH; BK = AH ( 2 cạnh tương ứng)

2 tháng 6 2017

Nối A với K

Xét tam giác ABK và tam giác AHK có:

AK: cạnh chung

góc BAK = góc AKH (AB // HK)

góc HAK = góc AKB (AH //BK)

=> tam giác ABK = tam giác AHK

=> AB = HK (hai cạnh tương ứng)

Ta có: tam giác ABK = tam giác AHK

=> AH = BK (hai cạnh tương ứng)

1 tháng 12 2017

kẻ đoạn thẳng AK

Xét tamgiác KAH và tam giác AKB

góc HAK = góc BKA (2 góc so le trong do AK cắt AH// BK )

cạnh AK chung

góc HKA = góc BAK (2 góc so le trong do AB //HK )

=> tam giác KAH = tam giác AKB ( g.c.g.)

=> AB=HK (2 cạnh tương ướng )

=> AH = BK (2 cạnh tương ướng )

đúng không..............................................

a: Xét ΔAHD vuông tại H và ΔBKC vuông tại K có

AD=BC

góc D=góc C

=>ΔAHD=ΔBKC

b: Xét tứ giác ABKH có

AB//KH

AH//BK

=>ABKH là hình bình hành

=>AB=KH

13 tháng 8 2023

còn câu c thì sao ạ?

 

19 tháng 4 2020

a. Gọi M' và N' là giao điểm của tia AM và BN với CD.

Ta có: ∠(M') = ∠A2(sole trong)

∠A1= ∠A2(gt)

⇒ ∠(M') = ∠A1nên ΔADM' cân tại D

* DM là phân giác của ∠(ADM' )

Suy ra: DM là đường trung tuyến (tính chất tam giác cân)

⇒ AM = MM'

∠(N') = ∠B1nên ΔBCN' cân tại C.

* CN là phân giác của ∠(BCN')

Suy ra: CN là đường trung tuyến (tính chất tam giác cân)

⇒ PN = NN'

Suy ra: MN là đường trung bình của hình thang ABN'M'

⇒ MN = M'N' (tính chất đường trung hình hình thang)

Hay MN//CD

b)MN=AB+M′N′/2 (tính chất đường trung bình của hình thang)

⇒MN=AB+M′D+CD+CN′/2(1)

Mà M′D=AD,CN′=BC. Thay vào (1)

MN=AB+AD+CD+BC/2=a+d+c+b/2

24 tháng 7 2016

hình tự vẽ nhé! :)

có HT ABCD cân

=>AD=BC và góc D=góc C

xét tg AHD và tg BKC có:

g. AHD=g.BKC=90*

AD=BC

g.D=g.C

=>tg AHD=tg BKC( cạnh huyền-gn)

=>DH=CK=>dpcm :)

5 tháng 1 2021
Bạn tham khảo nhé!

Bài tập Tất cả

Bài tập Tất cả

Bài tập Tất cả