Cho tam giác ABC vuông tại A có AH là dường cao. Gọi I,K lần lượt là hình chiếu của H lên AB và AC. Biết BC= 10 cm; AH = 4 cm
CMR a AH=IK
b AB.AI= AK. AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a/ Tứ giác $AEHF$ có 3 góc vuông: $\widehat{A}=\widehat{E}=\widehat{F}=90^0$ nên là hình chữ nhật.
$\Rightarrow AH=EF$
b/ $HF=AE$ (do $AEHF$ là hcn)
Xét tam giác $AEH$ và $AHB$ có:
$\widehat{A}$ chung
$\widehat{AEH}=\widehat{AHB}=90^0$
$\Rightarrow \triangle AEH\sim \triangle AHB$ (g.g)
$\Rightarrow \frac{AE}{AH}=\frac{AH}{AB}$
$\Rightarrow AE=\frac{AH^2}{AB}=\frac{AB^2-BH^2}{AB}=\frac{6^2-3,6^2}{6}=3,84$ (cm)
a: Xét tứ giác AIHK có
\(\widehat{KAI}=\widehat{AKH}=\widehat{AIH}=90^0\)
Do đó: AIHK là hình chữ nhật
b: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(AH^2=BH\cdot CH\)
A) Xét tg AIHK có I = 90 độ( I là hình chiếu của H)
A=90 độ( tg ABC vg tại A)
K=90 độ( K là hình chiếu của H)
=> tg AIHK là hcn (dh1)
B) Xét tg ABC và tg ABH có A=H=90 độ
B chung
=> tg ABC~tg ABH(g.g)
Xét tg ABC và tg HAC có A=H=90 độ
C chung
=> tg ABC ~ tg HAC ( g.g)
=> tg ABH~ Tg HAC(~ tg ABC)
=> AB/AH=AH/CH<=>AH2=BH.CH
EM CHUA HOC MOI HOC LOP 7 XIN LOI CHI TIC CHO EM CAI VOI
AI = \(\frac{8\sqrt{5}}{5}\)
AK = \(\frac{4\sqrt{5}}{5}\)
SAIK = \(\frac{8\sqrt{5}}{5}\) *\(\frac{4\sqrt{5}}{5}\) / 2 = 3,2 cm2
a: góc AIH=góc AKH=góc KAI=90 độ
=>AIHK là hcn
b: AIHK là hcn
=>góc AIK=góc AHK=góc C
=>ΔAIK đồng dạng với ΔACB
a: góc AIH=góc AKH=góc KAI=90 độ
=>AIHK là hình chữ nhật
=>AH=IK
b: ΔAHB vuông tại H có HI là đường cao
nên AI*AB=AH^2
ΔAHC vuông tại H có HK là đường cao
nên AK*AC=AH^2
=>AI*AB=AK*AC