Cho tam giác ABC. Trên AB và AC lấy D và E sao cho AD= 1/3 AB; AE=2/5 AC. Tính diện tích ABC biết diện tích ABE= 30 cm2
xin lỗi vì mình không biết vẽ hình ai vẽ gúp nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta AED\)và \(\Delta ABD\)có chung đường cao hạ từ D xuống cạnh đáy AB
Mà \(AE=\frac{2}{3}AB\Rightarrow S_{\Delta AED}=\frac{2}{3}S_{\Delta ABD}\)
\(\Rightarrow S_{\Delta ABD}=\frac{3}{2}S_{\Delta AED}=\frac{3}{2}\times4=6\left(cm^2\right)\)
Xét \(\Delta ABD\)và \(\Delta ABC\)có chung đường cao hạ từ B xuống cạnh đáy AC
Mà \(AD=\frac{1}{3}AC\Rightarrow S_{\Delta ABD}=\frac{1}{3}S_{\Delta ABC}\)
\(\Rightarrow S_{\Delta ABC}=3S_{\Delta ABD}=3\times6=18\left(cm^2\right)\)
Vậy ...
1) Ta có hình vẽ sau:
Vì AB // CD nên \(\widehat{A_1}\) = \(\widehat{C_1}\) (so le trong)
AD // BC nên \(\widehat{A_2}\) = \(\widehat{C_2}\) ( so le trong)
Xét ΔABC và ΔCDA có:
\(\widehat{A_1}\) = \(\widehat{C_1}\) (cm trên)
AC: Cạnh chung
\(\widehat{A_2}\) = \(\widehat{C_2}\) (cm trên)
\(\Rightarrow\) ΔABC = ΔCDA (g.c.g) (đpcm)
2) Chứng minh tương tự ta có: ΔCDA = ABC (g.c.g)
\(\Rightarrow\) AB = CD ( 2 cạnh tương ứng) (đpcm)
3) Mình sửa lại chỗ AE = AC là AE = AB đó nha, bn ghi nhầm đề!!!
Ta có hình vẽ sau:
Xét ΔABC và ΔAFE có:
AE = AB (gt)
\(\widehat{A_1}\) = \(\widehat{A_2}\) (đối đỉnh)
AF = AC (gt)
\(\Rightarrow\) ΔABC = ΔAFE(c.g.c) (đpcm)
Bạn áp dụng trường hợp bằng nhau cạnh - góc - cạnh của tam giác rồi chứng minh nha
a: Xét ΔADC và ΔAEB có
AD=AE
góc DAC chung
AC=AB
=>ΔADC=ΔAEB
b: AD+DB=AB
AE+EC=AC
mà AB=AC và AD=AE
nên DB=EC
Xét ΔDBC và ΔECB có
DB=EC
góc DBC=góc ECB
BC chung
=>ΔDBC=ΔECB
=>góc KBC=góc KCB
=>ΔKBC cân tại K