Cho tam giác ABC có diện tích 30cm2. Các điểm D, E theo tứ tự lấy trên các cạnh AC, AB sao cho AD = DC; AE = EB/2. Gọi K là giao điểm của BD và CE. Tính diện tích tứ giác ADKE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`bạn tự kẻ hình nhé
ta đễ dàng cm dk DM=CM
Từ đó ta có SAMD=1/2 SDAC=1/3 SABC
SBDM = 1/2SBDC= 1/6 SABC
Suy ra SABM=(1/3+1/6)SABC= 1/2SABC= 15m^2
Xét ΔABC có \(\dfrac{AF}{AB}=\dfrac{2}{3}\)
nên \(S_{AFC}=\dfrac{2}{3}\cdot S_{ABC}=\dfrac{2}{3}\cdot18=12\left(cm^2\right)\)
Xét ΔAFC có \(\dfrac{AE}{AF}=\dfrac{AD}{AC}=\dfrac{1}{2}\)
nên ED//FC
Xét ΔAFC có ED//FC
nên \(\dfrac{ED}{FC}=\dfrac{AE}{AF}=\dfrac{1}{2}\)
Xét ΔAFC có ED//FC
nên ΔAED đồng dạng với ΔAFC
=>\(\dfrac{S_{AED}}{S_{AFC}}=\left(\dfrac{ED}{FC}\right)^2=\dfrac{1}{4}\)
=>\(S_{AED}=\dfrac{1}{4}\cdot S_{AFC}=3\left(cm^2\right)\)
\(S_{AED}+S_{EDCF}=S_{AFC}\)
=>\(S_{EDCF}=S_{AFC}-S_{AED}=9\left(cm^2\right)\)
AE=1/2AC
=>\(S_{ABE}=\dfrac{1}{2}\cdot S_{ABC}\)
=>\(S_{ABE}=\dfrac{1}{2}\cdot30=15\left(cm^2\right)\)
AD+BD=AB
=>\(AD+2AD=AB\)
=>3AD=AB
=>\(AD=\dfrac{1}{3}AB\)
=>\(S_{ADE}=\dfrac{1}{3}\cdot S_{ABE}=\dfrac{1}{3}\cdot15=5\left(cm^2\right)\)
Đặt SAKE = x, SAKD = y
Ta có SBKE = 2x, SCKD = y.
Ta có:
S A B D = 15 c m 2 ⇒ 3 x + y = 15 ( 1 ) S A C E = 10 c m 2 ⇒ x + 2 y = 10 ( 2 )
Þ x = 4cm2, y = 3cm2
Þ SADKE = 7cm2