BÀI 2 :
Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC
a) Chứng minh BE = DC
b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.
c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.
a/ Xét \(\Delta ABE\) và \(\Delta ADC\) có:
AB = AD (gt)
\(\widehat{A}:chung\)
AE = AC (gt)
=> \(\Delta ABE=\Delta ADC\left(c-g-c\right)\)
=> BE = DC (đpcm)
b/ Có: AB + BC = AC
AD + DE = AE
mà AB = AD (gt) ; AC = AE (gt)
=> BC = DE
Ta có: \(\widehat{ABE}+\widehat{CBE}=180^o\) (kề bù)
\(\widehat{ADC}+\widehat{EDC}=180^o\) (kề bù)
mà \(\widehat{ABE}=\widehat{ADC}\) (2 góc tương ứng do \(\Delta ABE=\Delta ADC\) )
=> \(\widehat{CBE}=\widehat{EDC}\)
Xét \(\Delta OBC\) và \(\Delta ODE\) có:
\(\widehat{CBE}=\widehat{EDC}\left(cmt\right)\)
BC = DE (cmt)
\(\widehat{DCB}=\widehat{BED}\) (2 góc tương ứng do \(\Delta ABE=\Delta ADC\) )
=> \(\Delta OBC=\Delta ODE\left(g-c-g\right)\left(đpcm\right)\)
c/ Xét \(\Delta ACM\) và \(\Delta AEM\) có:
AM: cạnh chung
AC = AE (gt)
CM = EM (gt)
=> \(\Delta ACM=\Delta AEM\left(c-c-c\right)\)
=> \(\widehat{AMC}=\widehat{AME}\)
mà \(\widehat{AMC}+\widehat{AME}=180^o\)
=> \(\widehat{AMC}=\widehat{AME}=90^o\)
=> AM _l_ CE
mà CM = EM (gt)
=> AM là đương trung trực của CE (đpcm)