Cho tam giác ABC và Tam giác ADC có
AB=CD; AD=BC; AH vuông góc với BC
Chứng minh:
a) AD//BC
b) AH vuông góc với AD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔADC có \(AC^2=AD^2+CD^2\)
nên ΔADC vuông tại D
b: Xét ΔABC có
AD là đường cao
AD là đường phân giác
Do đó: ΔABC cân tại A
c: Xét ΔBCE có
CA là đường trung tuyến
CA=BE/2
Do đó: ΔBCE vuông tại C
a: Xét ΔADC có \(AC^2=AD^2+DC^2\)
nên ΔADC vuông tại D
b: Xét ΔABC có
AD là đường cao
AD là đường phân giác
Do đó: ΔABC cân tại A
c: Xét ΔBCE có
BA là đường cao
BA=CE/2
Do đó: ΔBCE vuông tại C
a: Xét ΔADC có \(AC^2=AD^2+DC^2\)
nên ΔADC vuông tại D
b: Xét ΔABC có
AD là đường cao
AD là đường phân giác
Do đó: ΔABC cân tại A
c: Xét ΔBCE có
BA là đường cao
BA=CE/2
Do đó: ΔBCE vuông tại C
a: Xét ΔADC có \(AC^2=AD^2+DC^2\)
nên ΔADC vuông tại D
b: Xét ΔABC có
AD là đường cao
AD là đường phân giác
Do đó: ΔABC cân tại A
c: Xét ΔBCE có
BA là đường cao
BA=CE/2
Do đó: ΔBCE vuông tại C
Ta có: EC⊥EB
mà EB⊥AD
nên EC//AD
Ta có : \(BC^2=AB^2+AC^2\Leftrightarrow100=64+36\)(luôn đúng)
vậy tam giác ABC vuông tại A
tâm đường tròn nội tiếp tam giác ABC vuông tại A là trung điểm cạnh huyền
hay AI = IB = IC = BC/2 = 5