Cho ∆ABC vuông tại A có AB=6cm; AC=8cm. Vẽ đường cao AH. a) chứng minh ∆ABC đồng dạng ∆HBA. Tính BH? b) vẽ phân giác AD của ∆ABC. Tính HD?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5:
a) Xét ΔABC vuông tại A có
\(AC=AB\cdot\cot\widehat{C}\)
\(=21\cdot\cot40^0\)
\(\simeq25,03\left(cm\right)\)
b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=21^2+25,03^2=1067,5009\)
hay \(BC\simeq32,67\left(cm\right)\)
a) Áp dụng tỉ số lượng giác:
\(sinB=\dfrac{AC}{BC}\Rightarrow AC=sin45^0.6=3\sqrt{2}\left(cm\right)\)
\(cosB=\dfrac{AB}{BC}\Rightarrow AB=cos45^0.6=3\sqrt{2}\left(cm\right)\)
b) \(S_{ABC}=\dfrac{1}{2}AB.AC=\dfrac{1}{2}.3\sqrt{2}.3\sqrt{2}=9\left(cm^2\right)\)
a: BC=10cm
b: Xét ΔABK vuông tại A và ΔHBK vuông tại H có
BK chung
\(\widehat{ABK}=\widehat{HBK}\)
Do đó: ΔABK=ΔHBK
Bài 1:
AC=4cm
Xét ΔABC có AB<AC
nên \(\widehat{C}< \widehat{B}\)
Bài 2:
BC=6cm
=>AB+AC=14cm
mà AB=AC
nên AB=AC=7cm
Xét ΔABC có AB=AC>BC
nên \(\widehat{B}=\widehat{C}>\widehat{A}\)
\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)
a: Xét ΔABC và ΔHBA có
góc BAC=góc BHA
góc B chung
=>ΔABC đồng dạng với ΔHBA
BC=10cm
=>BH=6^2/10=3,6cm
b: \(AD=\dfrac{2\cdot6\cdot8}{6+8}\cdot cos45=\dfrac{24\sqrt{2}}{7}\left(cm\right)\)
AH=6*8/10=4,8cm
=>\(HD=\dfrac{24}{35}\left(cm\right)\)