vẽ tam giác ABC có AB=3cm; AC=4cm;BC=5cm
a) chứng minh rằng tam giác ABC vuông
b)tính độ dài đường cao AH (H thuộc BC)
c)Tính độ dài trung tuyến AM (M thuộc BC )
d) kẻ phân giác AD . tính diên tích tam giác ADM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách vẽ:
Vẽ AC = 5 cm.
Vẽ cung tròn (A; 3 cm).
Vẽ cung tròn (C; 4 cm).
Hai cung tròn cắt nhau tại B. Vẽ đoạn thẳng BA, BC ta được tam giác ABC.
Tam giác ABC có 1 góc vuông tại B
Hình vẽ bạn phải tự vẽ được chứ, bài này là bài rất rất rất cơ bản rồi đấy:vv
Ta có tam giác ABC là tam giác vuông
=> SABC=\(\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.4.3=6\) (cm2)
Áp dụng định lý Py-ta-go vào tam giác vuông ABC:
BC2=AB2+AC2=42+32=52
=> BC=5(cm)
Mà SABC=\(\dfrac{1}{2}.AH.BC=\dfrac{1}{2}.AH.5=2,5.AH=6\)
=> AH=2,4(cm)
Vậy...
Có thể do cẩu thả mình sai số chỗ nào đó nhưng hướng làm như này nhé, đáng nhẽ bài này mình không giải đâu:vv
a:\(BC=\sqrt{4^2+3^2}=5\left(cm\right)\)
AH=4*3/5=2,4cm
b: ΔCAD cân tại C
mà CH là đường cao
nên CH là phân giác của góc ACD
Xét ΔCAB và ΔCDB có
CA=CD
góc ACB=góc DCB
CB chung
Do dó: ΔCAB=ΔCDB
=>góc CDB=90 độ
=>BD là tiếp tuyến của (C)