K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2016

minh ? minh ?

31 tháng 12 2018

a) Vì AB = 3 x AM, AC = 3 x AN, nên MB = 2/3 x AB, NC = 2/3 x AC.

Từ đó suy ra : dt (MBC) = 2/3 x dt (ABC) (chung chiều cao từ C

dt (NCB) = 2/3 x dt (ABC) (chung chiều cao từ B)

Vậy dt (MBC) = dt (NCB) mà tam giác MBC và tam giác NCB có chung đáy BC, nên chiều cao từ M bằng chiều cao từ N xuống đáy BC hay MN song song với BC. Do đó BMNC là hình thang.

Từ MB = 2/3 x AB, nên dt (MBN) = 2/3 x dt (ABN) (chung chiều cao từ N) hay dt (ABN) = 2/3 x dt (MBN).

Hơn nữa từ AC = 3 x AN, nên NC = 2 x AN, do đó dt (NBC) = 2 x dt (ABN) (chung chiều cao từ B) ; suy ra dt (NBC) = 3/2 x 2 x dt (MBN) = 3 x dt (MBN).

Mà tam giác NBC và tam giác MBN có chiều cao bằng nhau (cùng là chiều cao của hình thang BMNC). Vì vậy đáy BC = 3 x MN.

b) Gọi BN cắt CM tại O. Ta sẽ chứng tỏ AI cũng cắt BN tại O. Muốn vậy, nối AO kéo dài cắt BC tại K, ta sẽ chứng tỏ K là điểm chính giữa của BC (hay K trùng với I).

Theo phần a) ta đã có dt (NBC) = 2 x dt (ABN). Mà tam giác NBC và tam giác ABN có chung đáy BN, nên chiều cao từ C gấp 2 lần chiều cao từ A xuống đáy BN. Nhưng đó là chiều cao tương ứng của hai tam giác BCO và BAO có chung đáy BO, vì vậy dt (BCO) = 2 x dt (BAO)

Tương tự ta cũng có dt (BCO) = 2 x dt (CAO).

Do đó dt (BAO) = dt (CAO). Hai tam giác BAO và CAO có chung đáy AO, nên chiều cao từ B bằng chiều cao từ C xuống đáy AO. Đó cũng là chiều cao tương ứng của hai tam giác BOK và COK có chung đáy OK, vì vậy dt (BOK) = dt (COK). Mà hai tam giác BOK và tam giác COK lại chung chiều cao từ O, nên hai đáy BK = CK hay K là điểm chính giữa của cạnh BC. Vậy điểm K trùng với điểm I hay BN, CM, AI cùng cắt nhau tại điểm O.

6 tháng 9 2017

8 tháng 1 2020

A B C P N I K H M

\(S_{AMC}=\frac{1}{3}S_{ABC}\)  ( Vì hai tam giác có chung chiều cao hạ từ đỉnh \(C\)xuống \(AB\) và \(AM=\frac{1}{3}AB\))

\(S_{BNC}=\frac{1}{3}S_{ABC}\) ( Vì hai tam giác có chung chiều cao hạ từ đỉnh \(B\)xuống \(AC\) và  \(NC=\frac{1}{3}AC\))

\(S_{ABP}=\frac{1}{3}S_{ABC}\) ( Vì hai tam giác có chung chiều cao hạ từ đỉnh \(A\)xuống \(BC\)và \(BP=\frac{1}{3}BC\))

Suy ra : \(S_{AMC}+S_{BNC}+S_{BKP}=S_{ABC}\)

Tuy nhiên trên hình vẽ tổng diện tích 3 tam giác chưa phủ kín \(S_{ABC}\) , còn phần trống là \(S_{IHK}\).

Mà trong tổng diện tích 3 tam giác trên có : \(S_{AMH}\) ; \(S_{BKP}\)\(S_{INC}\) bị tính 2 lần .

Vậy : \(S_{IHK=}S_{AMH}+S_{BKP}+S_{INC}\)( đpcm )

a: Xét ΔBAC có

AD/AB=AE/AC(2)

nên DE//BC

b: Xét ΔABM có DN//BM

nên DN/BM=AD/AB(1)

Xét ΔACM có NE//MC

nên NE/MC=AE/AC(3)

Từ (1), (2) và (3) suy ra DN/BM=NE/MC

=>DN/NE=5/2

hay DN=2,5NE