K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2021

a tgABC can tai c,b oc=12,5

22 tháng 10 2021

Trên BC lấy I sao cho IC=IB

Ta có AM=MC=AC/2=20/2= 10 cm

Từ M kẻ MH vuông góc AB. Theo gt, ta được MH=8 cm

Áp dụng Pytago trong tam giác vuông AMH: AH2= AM- MH2 = 10- 82= 36 ----> AH=6 cm

có AM=MC ; IB=IC ---> MI=1/2AB=1/2 .24 =12 cm( đường TB)

Từ I kẻ IK vuông góc AB

có MI// AB( MI là đường trung bình) ; IK//MK (cùng vuông góc AB) 

---> MIKH là hình bình hành

---> MI=HK=12 cm; MH=IK=8 cm

BK= AB-AH-HK = 24-6-12=6 cm

Xét tam giác AMH và tam giác BIK:

     AH=BK=6 

     góc AHM= góc BKI= 90O

      MH=IK=8

----> tam giác AMH=tam giác BIK(c.g.c)

----> góc MAH= góc IBK (cặp góc tương ứng) hay góc CAB= góc CBA

----> tam giác ABC cân tại C

b) có AM=MC=AC/2=10 cm ; IB=IC= BC/2 ; mà AC=BC (tam giáccân)

----> AM=MC=IB=IC=10 cm

Kéo dài CO cắt AB tại D

tam giác AOC có OA=OC (bán kính) --> tam giác AOC cân tại O

có OM là trung tuyến ---> OM vuông góc AC hay góc OMC=90o

Tương tự với tam giác OCB được  OI vuông góc BC hay góc OIC=90o

Xét tam giác vuông OMC và tam giác vuông OIC:

     MC=IC=10cm

    OC cạnh chung

--->tam giác OMC = tam giác OIC (ch.cgv)

--> góc MCO= góc ICO ---> CO hay CD là phân giác góc ACB của tam giác cân ABC --->

CD vuông góc AB hay góc ADC=90oAD=BD=AB/2 = 12 cm

Theo Pytago trong tam giác ACD: CD2= AC2-AD2 = 202-122 =256  ---> CD=16 cm

Đặt OC=OA=X --> OD= CD-OC = 16 - X

Theo Pytago tam giác AOD: AO2= OD2+AD2

                                                     <-->X2= (16-X)2 + 122

                                                     <--> 162 -32X + X2 +122 - X2=0

                                       <--> 400 - 32X=0

                                       <--> X= -400/-32= 12,5 cm

 Vậy bán kính đường tròn bằng 12,5 cm

22 tháng 10 2015

Kéo dài AD cắt đường tròn ngoại tiếp ABC tại H'.

Đặt x=HD; 
Vì góc BAC nhọn và do H' đối xứng với H qua BC nên ta có: DH'=HD=x; CH'=CH=30
Áp dụng Pitago cho tg vuông ACH':

AC^2+(CH')^2=(AH')^2 -->AC^2+900=(14+2x)^2 (*)
Mặt khác CD^2= AD.DH' --> CD^2=(14+x).x (**)
trừ 2 vế (*) và (**):

AC^2+900-CD^2 =(14+2x)^2 -(14+x).x (***)
Mà AC^2-CD^2 =AD^2 =(14+x)^2;

Thế vào (***) ta được ph.tr:

(14+x)^2+900 =(14+2x)^2-(14+x)x ---> x^2+7x-450=0
phtr trên có nghiệm x= -25 (loại) và x= 18 (nhận)
AD= 14+x =14+18= 32 cm