K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: 2BM=BD

Xét tứ giác ABCD có 

M là trung điểm của BD

M là trung điểm của AC

Do đó: ABCD là hình bình hành

Suy ra: AB=CD

Xét ΔBCD có BD<BC+CD

=>AB+BC>2BM

b: Ta có: \(\widehat{ABM}=\widehat{CDM}\)

mà \(\widehat{CDM}>\widehat{CBM}\)

nên \(\widehat{ABM}>\widehat{CBM}\)

Bài 5: 

Ta có: \(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH\left(BH+9\right)=400\)

\(\Leftrightarrow BH^2+25HB-16HB-400=0\)

\(\Leftrightarrow BH=16\left(cm\right)\)

hay BC=25(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)

23 tháng 2 2022

9999999999999

23 tháng 2 2022

 a) Áp dụng định lý Py - ta - go  vào \(\Delta ABC\)vuông tại \(A\)

\(BC^2=AB^2+AC^2\)

\(BC^2=3^2+3^2\Rightarrow BC=3\sqrt{2}cm=18\left(cm\right)\)

b) Áp dụng định lý Py - ta - go  vào \(\Delta ABC\)vuông tại \(A\)ta có :

\(BC^2+AB^2+AC^2\)

\(BC^2=4^2+6^2\)

\(BC=28\left(cm\right)\)

c) Áp dụng định lý Py - ta - go  vào \(\Delta ABC\)vuông tại \(A\), ta có :

\(BC^2=AB^2+AC^2=BC^2=5^2+3^2\Rightarrow BC=25+9=34\left(cm\right)\)

d) Áp dụng định lý Py - ta - go  vào \(\Delta ABC\)vuông tại \(A\)ta có :

\(BC^2=AB^2+AC^2=BC^2=5^2+5^2=5\sqrt{2}=50\left(cm\right)\)

Bài 1: 

AH=12cm

AC=20cm

\(\widehat{ABC}=37^0\)

4 tháng 9 2017

Vì SABC=37,5=>AH.BC=75=>BC=12,5

Đặt cạnh CH=x

=>HB=12,5-x

Áp dụng hệ thức 2 vào tam giác abc

AH2=BH.CH

<=>62=x(12,5-x)

<=>36=12,5x-x2

<=>x2-12,5x+36=0

<=>(x-6,25)2=3

..............tìm x sau đó thay vào tìm ab,ac

31 tháng 10 2021

a, \(BC=BH+CH=8\left(cm\right)\)

Áp dụng HTL: \(\left\{{}\begin{matrix}AB=\sqrt{BH\cdot BC}=4\left(cm\right)\\AC=\sqrt{CH\cdot BC}=4\sqrt{3}\left(cm\right)\end{matrix}\right.\)

1: Xét ΔBAI vuông tại A và ΔBDI vuông tại D có

BI chung

\(\widehat{ABI}=\widehat{DBI}\)

Do đó: ΔBAI=ΔBDI

Suy ra:BA=BD

2: Xét ΔAIE vuông tại A và ΔDIC vuông tại D có

IA=ID

\(\widehat{AIE}=\widehat{DIC}\)

Do đó: ΔAIE=ΔDIC

Suy ra: AE=DC
Ta có: BA+AE=BE

BD+DC=BC

mà BA=BD

và AE=DC

nên BE=BC

hay ΔBEC cân tại B

3: Xét ΔBEC có BA/AE=BD/DC

nên AD//EC

1:

BC=15+20=35cm

AD là phân gíac

=>AB/BD=AC/CD

=>AB/3=AC/4=k

=>AB=3k; AC=4k

AB^2+AC^2=BC^2

=>25k^2=35^2

=>k=7

=>AB=21cm; AC=28cm

AH=21*28/35=16,8cm

\(AD=\dfrac{2\cdot21\cdot28}{21+28}\cdot cos45=12\sqrt{2}\left(cm\right)\)

2:

BC=căn 12^2+16^2=20cm

HB=AB^2/BC=12^2/20=7,2cm

HC=20-7,2=12,8cm