K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2023

a) Với ∆ABC ⊥ tại A và M là trung điểm BC, ta có:

 

- Theo định lý Pythagoras, ta có: AB^2 + AC^2 = BC^2

- Thay giá trị vào, ta có: 6^2 + 8^2 = BC^2

- Tính toán, ta có: 36 + 64 = BC^2

- Tổng cộng, BC^2 = 100

- Vì BC là độ dài, nên BC = √100 = 10cm

 

- Vì M là trung điểm BC, nên AM = MC = 10/2 = 5cm

 

b) Để chứng minh ABEC là hình chữ nhật, ta cần chứng minh AB // EC và AB = EC.

 

- Vì M là trung điểm BC, nên AM = MC.

- Vì ∆ABC ⊥ tại A, nên góc BAC = 90 độ.

- Vì M là trung điểm BC, nên BM = MC.

- Vì BM = MC và góc BAC = 90 độ, nên ∆BAM ≅ ∆CAM theo góc-góc-góc.

- Từ đó, ta có AB = AC và góc BAM = góc CAM.

- Vì AB = AC và góc BAM = góc CAM, nên ∆ABM ≅ ∆ACM theo cạnh-góc-cạnh.

- Từ đó, ta có góc AMB = góc AMC và BM = MC.

- Vì góc AMB = góc AMC và BM = MC, nên ∆BME ≅ ∆CME theo góc-góc-góc.

- Từ đó, ta có góc BME = góc CME và BM = MC.

- Vì góc BME = góc CME và BM = MC, nên BM // EC.

- Vì BM // EC và AB = AC, nên AB // EC và AB = EC.

- Từ đó, ta có ABEC là hình chữ nhật.

 

c) Để chứng minh AH = IK và NO = 1/2 IK, ta cần chứng minh ∆AHN ≅ ∆IKO.

 

- Vì AH ⊥ BC và IK ⊥ AB, nên góc HAN = góc KIO = 90 độ.

- Vì AH ⊥ BC và HN ⊥ AN, nên góc HAN = góc HNA.

- Vì IK ⊥ AB và KO ⊥ AO, nên góc KIO = góc KOI.

- Vì góc HAN = góc HNA và góc KIO = góc KOI, nên ∆AHN ≅ ∆IKO theo góc-góc-góc.

- Từ đó, ta có AH = IK và NO = 1/2 IK.

 

d) Vì ∆AHN ≅ ∆IKO, nên góc INK = góc HNO.

 

- Vì NO = 1/2 IK, nên góc HNO = góc INK.

- Từ đó, ta có góc INK = góc HNO.

28 tháng 11 2023

bạn có thể chỉ mình cách vẽ hình câu c được ko

 

a: Xét ΔBAH vuông tại H và ΔBCA vuông tại A có

góc B chung

=>ΔBAH đồng dạng với ΔBCA

\(CB=\sqrt{6^2+8^2}=10\left(cm\right)\)

HB=6^2/10=3,6cm

b: ΔHAC vuông tại H có HN vuông góc AC

nên HN^2=NA*NC

29 tháng 11 2021

helo duy

29 tháng 11 2021

helo duy

Cho tam giác ABC cân tại A có BC = 6cm. Gọi M,N,P lần lượt là trung điểm của AB, AC, BCa) Tính độ dài MN? Chứng minh MBNC là hình thang cânb) Gọi K là điểm đối xứng của B qua N. Chứng minh tứ giác ABCK là hình bình hànhc) Gọi H là điểm đối xứng của P qua M. Chứng minh AHBP là hình chữ nhậtd) Chứng minh AMPN là hình thoia. MN = ?Trong ΔABC có:  M là trung điểm AB (gt)  N là trung điểm AC (gt)⇒ MN là đường trung bình ΔABC⇒ MN =...
Đọc tiếp

Cho tam giác ABC cân tại A có BC = 6cm. Gọi M,N,P lần lượt là trung điểm của AB, AC, BC

a) Tính độ dài MN? Chứng minh MBNC là hình thang cân

b) Gọi K là điểm đối xứng của B qua N. Chứng minh tứ giác ABCK là hình bình hành

c) Gọi H là điểm đối xứng của P qua M. Chứng minh AHBP là hình chữ nhật

d) Chứng minh AMPN là hình thoi

a. MN = ?

Trong ΔABC có:

  M là trung điểm AB (gt)

  N là trung điểm AC (gt)

⇒ MN là đường trung bình ΔABC

⇒ MN = 1/2BC (t/c)

Mà BC = 6cm (gt)

⇒ MN=BC/2=6/2=3(cm)

C/m: BMNC là hình thang cân

Có MN là đường trung bình ΔABC

⇒ MN//BC

⇒ BMNC là hình thang 

Mà góc ABC = góc ACB (ΔABC cân tại A)

⇒ BMNC là hình thang cân (DHNB)

b. C/m: ABCK là hình bình hành

Xét tứ giác ABCK có:

  N là trung điểm AC (gt)

  N là trung điểm BK (K đ/x với B qua M)

⇒ ABCK là hình bình hành (DHNB)

c. C/m: AHBP là hình chữ nhật

Xét tứ giác AHBP có:

  M là trung điểm AB (gt)

  M là trung điểm PH ( H đ/x với P qua M)

⇒ AHBP là hình bình hành (DHNB)

Có ΔABC cân tại A

⇒ AP là trung tuyến đồng thời là đg cao

⇒ góc APB = 90 độ

⇒ AHBP là hình chữ nhật (DHNB)

d) Chứng minh AMPN là hình thoi

Tính giúp mình câu d nha!!!

0
30 tháng 11 2021

a. MN = ?

Trong ΔABC có:

  M là trung điểm AB (gt)

  N là trung điểm AC (gt)

⇒ MN là đường trung bình ΔABC

⇒ MN = 1/2BC (t/c)

Mà BC = 6cm (gt)

⇒ MN=BC/2=6/2=3(cm)

b. C/m: BMNC là hình thang cân

Có MN là đường trung bình ΔABC

⇒ MN//BC

⇒ BMNC là hình thang 

Mà góc ABC = góc ACB (ΔABC cân tại A)

⇒ BMNC là hình thang cân (DHNB)

c. C/m: ABCK là hình bình hành

Xét tứ giác ABCK có:

  N là trung điểm AC (gt)

  N là trung điểm BK (K đ/x với B qua M)

⇒ ABCK là hình bình hành (DHNB)

d. C/m: AHBP là hình chữ nhật

Xét tứ giác AHBP có:

  M là trung điểm AB (gt)

  M là trung điểm PH ( H đ/x với P qua M)

⇒ AHBP là hình bình hành (DHNB)

Có ΔABC cân tại A

⇒ AP là trung tuyến đồng thời là đg cao

⇒ góc APB = 90 độ

⇒ AHBP là hình chữ nhật (DHNB)

30 tháng 11 2021

a)

*Tính BC

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Vậy: BC=10cm

a) 

*Tính BE

Xét ΔABD vuông tại A và ΔEBD vuông tại E có 

BD chung

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

Do đó: ΔABD=ΔEBD(Cạnh huyền-góc nhọn)

Suy ra: BA=BE(hai cạnh tương ứng)

mà BA=6cm(gt)

nên BE=6cm

Vậy: BE=6cm

17 tháng 10 2021

a, Vì D,E là trung điểm AB,AC nên DE là đtb tg ABC

Do đó \(DE=\dfrac{1}{2}BC;DE//BC\)

Vậy BDEC là hình thang

b, Vì \(DE=\dfrac{1}{2}BC\) nên \(DE=BM\left(=\dfrac{1}{2}BC\right)\)(do M là trung điểm BC)

Mà DE//BC nên DE//BM

Do đó BDEM là hình bình hành

a: Xét ΔABM và ΔACM có

AB=AC
AM chung

BM=CM

Do đó; ΔABM=ΔACM

Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

b: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

\(\widehat{EAM}=\widehat{FAM}\)

Do đó: ΔAEM=ΔAFM

Suy ra: AE=AF và ME=MF

hay ΔMEF cân tại M

c: Xét ΔABC có AE/AB=AF/AC

nên EF//BC

a: ΔABC vuông tại A

mà AM là đường trung tuyến

nên MA=MB=MC

=>ΔABC nội tiếp (M)

b: ΔABC vuông tại A

=>\(BC^2=AB^2+AC^2\)

=>\(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

ΔABC vuông tại A có AM là đường trung tuyến

nên \(AM=\dfrac{BC}{2}=5\left(cm\right)\)

=>R=5cm