K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2017

2 AC ???

31 tháng 3 2017

tức là góc A lớn hơn 2 lần góc C đó

18 tháng 4 2018

A B C D E K I

Trên nửa mặt phẳng bờ BC có chứa điểm A, ta dựng 1 tam giác đều BIC. 

Gọi giao điểm của tia CI với AB là K.

Dễ thấy 3 điểm B,I,E thẳng hàng (Do ^CBI=^CBE=600)

Ta có: ^ABC=^ACB => ^ABE+^CBE=^ACK+^BCK. Mà ^CBE=^BCK=600

=> ^ABE=^ACK => \(\Delta\)AEB=\(\Delta\)AKC (g.c.g) = >AE=AK (2 cạnh tương ứng)

=> \(\Delta\)AKE cân tại A. Mà 2 điểm K và E lần lượt thuộc 2 cạnh AB và AC của \(\Delta\)ABC cân tại A

=> KE//BC => Dễ dàng chứng minh được \(\Delta\)KEI đều => KE=IE=IK

Xét \(\Delta\)DBC: Có ^DBC=80và ^BCD=500.

Thấy rằng 500=(1800-800)/2 => \(\Delta\)DBC cân tại đỉnh B => BC=BD

Vì \(\Delta\)BIC đều nên BC=BI => BD=BI => \(\Delta\)DBI cân tại B

Có thể tính được ^IBD=200 => ^BDI=^BID=800

=> ^DIK=^BIK-^BID= 1200-800 = 400. (Do ^BIK=1200) (1)

Xét \(\Delta\)KBC: ^KBC=800; ^KCB=600 => ^BKC=400 hay ^DKI=400 (2)

Từ (1) và (2) => ^DIK=^DKI => \(\Delta\)KDI cân tại D => DK=DI

Xét \(\Delta\)DKE và \(\Delta\)DIE có: DK=DI; DE chung; KE=IE (cmt) => \(\Delta\)DKE=\(\Delta\)DIE (c.c.c)

=> ^KED=^IED (2 góc tương ứng). Mà ^KED+^IED=^KEI=600 => ^IED= 600/2 =300

hay ^BED=300.

ĐS:...

18 tháng 4 2018

Mình làm được rồi nhưng thấy bảo là Toán lớp 7 nên lỡ xóa đi. Bây giờ chả nhớ cách giải. Hu Hu

29 tháng 4 2019

Bài 1: Áp dụng Định lý Pythagoras cho tam giác vuông ABC:AB2+AC2=BC2=>BC2=122+162=400=>BC=20(cm).

 Áp dụng Định lý:"Trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền"cho tam giác ABC:AM=\(\frac{1}{2}\)BC=\(\frac{1}{2}\).20=10cm

Do G là trọng tâm nên:AG=\(\frac{2}{3}\)AM=\(\frac{2}{3}\).10\(\approx\)6.7cm

Bài 2:

E D B C A H

a) Xét \(\Delta\)ABD và \(\Delta\)ACE:

      ADB=AEC=90

      BAC:chung

      AB=AC(\(\Delta\)ABC cân tại A)

=> \(\Delta\)ABD =\(\Delta\)ACE (Cạnh huyền-góc nhọn)

b) \(\Delta\)ABD =\(\Delta\)ACE (chứng minh trên)=>AD=AE=> \(\Delta\)AED cân tại A

c) Dễ thấy: H là trực tâm của tam giác ABC

    Mà  \(\Delta\)ABC cân tại A 

    Nên H cũng đồng thời là tam đường tròn ngoại tiếp tam giác ABC 

    Hay AH là đường trung trực của tam giác ABC

25 tháng 12 2021

1/4 thế kỉ 26 năm =..51...năm

7 tháng 9 2023

Để tính số đo các góc ∆ACMb, CMR: AM ┴ ABc, ta cần xác định các góc trong tam giác ∆ACM và ∆ACB. Với ∆ACM, ta có góc ∠ACM là góc vuông vì AM ┴ ABc. Với ∆ACB, ta có góc ∠ACB là góc vuông vì AB ┴ BC. Vì ∆ABC là tam giác đều, nên các góc trong tam giác này đều bằng nhau. Do đó, số đo các góc ∆ACMb là số đo góc ∠ACM và số đo góc ∠ACB.

30 tháng 12 2018

A B C M D 1 2 1 1 3 4

a, Xét \(\Delta\)AMB và \(\Delta\)DMC có

AM =MD (gt)

^M1 = ^M2 (đối đỉnh)

MB = MC (M là trung điểm BC)

=>\(\Delta AMB=\Delta DMC\left(c.g.c\right)\)

b, Từ \(\Delta AMB=\Delta DMC\left(cmt\right)\)

=> ^B1 = ^C1

Mà 2 góc này ở vị trí so le trong

=> AB // CD

c, Xét \(\Delta AMC\)và \(\Delta DMB\)

^M3 = ^M4 (đối đỉnh)

MA = MD (gt)

MB = MC (trung điểm)

\(\Rightarrow\Delta AMC=\Delta DMB\left(c.g.c\right)\)

=> AC = BD

30 tháng 12 2018

A B C M D

a) Xét tam giác AMB và tam giác DMC có : 

AM = DM (gt)

MB=MC(gt)

góc AMB = góc DMC (đối đỉnh)

nên tam giác AMB = tam giác DMC (c.g.c)

b) Ta có tam giác AMB = tam giác DMC (cmt) - CMT là chứng mình trên

=> góc ABM = góc DCM (2 góc tương ứng)

mà 2 góc này ở vị trí so le trong nên AB song song DC

c) Xét tam giác AMC và tam giác DMB có : 

AM = DM (gt)

CM = BM (gt)

góc AMC = góc DMB (đối đỉnh)

nên tam giác AMC = tam giác DMB (cgc)

suy ra AC=DB (2 cạnh tương ứng)

HỌC TỐT NHA