K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có AB<AC<BC

mà \(\widehat{ACB};\widehat{ABC};\widehat{BAC}\) lần lượt là góc đối diện của các cạnh AB,AC,BC

nên \(\widehat{ACB}< \widehat{ABC}< \widehat{BAC}\)

b: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔBAD=ΔBED

=>DA=DE

c: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE

\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)

Do đó: ΔDAF=ΔDEC
=>DF=DC

mà DC>DE(ΔDEC vuông tại E)

nên DF>DE

23 tháng 2 2022

9999999999999

23 tháng 2 2022

 a) Áp dụng định lý Py - ta - go  vào \(\Delta ABC\)vuông tại \(A\)

\(BC^2=AB^2+AC^2\)

\(BC^2=3^2+3^2\Rightarrow BC=3\sqrt{2}cm=18\left(cm\right)\)

b) Áp dụng định lý Py - ta - go  vào \(\Delta ABC\)vuông tại \(A\)ta có :

\(BC^2+AB^2+AC^2\)

\(BC^2=4^2+6^2\)

\(BC=28\left(cm\right)\)

c) Áp dụng định lý Py - ta - go  vào \(\Delta ABC\)vuông tại \(A\), ta có :

\(BC^2=AB^2+AC^2=BC^2=5^2+3^2\Rightarrow BC=25+9=34\left(cm\right)\)

d) Áp dụng định lý Py - ta - go  vào \(\Delta ABC\)vuông tại \(A\)ta có :

\(BC^2=AB^2+AC^2=BC^2=5^2+5^2=5\sqrt{2}=50\left(cm\right)\)

21 tháng 12 2021

bài 2:

ta có: AB<AC<BC(Vì 3cm<4cm<5cm)

=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)

Bài 3:

*Xét tam giác ABC, có:

       góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)

hay góc A+60 độ +40 độ=180độ

  => góc A= 180 độ-60 độ-40 độ.

  => góc A=80 độ

Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)

        => BC>AC>AB( Các cạnh và góc đối diện trong tam giác)

15 tháng 2 2022

bài 2:

ta có: AB <AC <BC (Vì 3cm <4cm <5cm)

=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)

Bài 3:

*Xét tam giác ABC, có:

       góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)

hay góc A+60 độ +40 độ=180độ

  => góc A= 180 độ-60 độ-40 độ.

  => góc A=80 độ

Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)

        => BC>AC>AB( Các cạnh và góc đối diện trong tam giác)

HT mik làm giống bạn Dương Mạnh Quyết

Bài 3 (3,0 điểm). Cho  ABC có AB cm AC cm BC cm    9 , 12 , 15 .a) Chứng minh  ABC vuông và so sánh các góc của  ABC ;b) Trên tia đối của tia AB lấy điểm D sao cho AB = AD. Chứng minh  DBC cân;c) Gọi K là trung điểm của cạnh BC. Đường thẳng DK cắt cạnh AC tại M. Tính CM;d) Từ trung điểm N của đoạn thẳng AC kẻ đường thẳng vuông góc với AC cắt DC tại I. Chứngminh ba điểm B, M, I thẳng...
Đọc tiếp

Bài 3 (3,0 điểm). Cho  ABC có AB cm AC cm BC cm    9 , 12 , 15 .
a) Chứng minh  ABC vuông và so sánh các góc của  ABC ;
b) Trên tia đối của tia AB lấy điểm D sao cho AB = AD. Chứng minh  DBC cân;
c) Gọi K là trung điểm của cạnh BC. Đường thẳng DK cắt cạnh AC tại M. Tính CM;
d) Từ trung điểm N của đoạn thẳng AC kẻ đường thẳng vuông góc với AC cắt DC tại I. Chứng
minh ba điểm B, M, I thẳng hàng.
Bài 3 (3,0 điểm). Cho  ABC có AB cm AC cm BC cm    9 , 12 , 15 .
a) Chứng minh  ABC vuông và so sánh các góc của  ABC ;
b) Trên tia đối của tia AB lấy điểm D sao cho AB = AD. Chứng minh  DBC cân;
c) Gọi K là trung điểm của cạnh BC. Đường thẳng DK cắt cạnh AC tại M. Tính CM;
d) Từ trung điểm N của đoạn thẳng AC kẻ đường thẳng vuông góc với AC cắt DC tại I. Chứng
minh ba điểm B, M, I thẳng hàng.
làm hộ mik ý D với

 

1

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔACB vuông tại A

b: Xét ΔCDB có

CA là đường cao

CA là đường trung tuyến

Do đó;ΔCDB cân tại C

c: Xét ΔCAB có 

CA là đường trung tuyến

DK là đường trung tuyến

CA cắt DK tại M

Do đó: M là trọng tâm của ΔCBA

Suy ra: CM=2/3CA=2/3x12=8(cm)

Ta có: BC=BH+CH

nên BC=25(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=15\left(cm\right)\\AC=20\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)

12 tháng 9 2021

14 tháng 9 2023

Bài 3:

Ta có:

\(\widehat{M}+\widehat{N}+\widehat{P}=180^o\)

\(\Rightarrow\widehat{P}=180^o-90^o-37^o=53^o\)  

Mà: \(sinN=\dfrac{MN}{NP}\)

\(\Rightarrow sin37^o=\dfrac{MN}{25}\)

\(\Rightarrow MN=25\cdot sin37^o\approx15\left(cm\right)\)

Áp dung định lý Py-ta-go ta có:

\(MP=\sqrt{NP^2-MN^2}=\sqrt{25^2-15^2}=20\left(cm\right)\)

3:

a: Xét ΔABC có AC^2=BA^2+BC^2

nên ΔBAC vuông tại B

b: Xét ΔBAC vuông tại B có

sin A=BC/AC=42/58=21/29

cos A=AB/AC=40/58=20/29

tan A=BC/BA=21/20

cot A=BA/BC=20/21

c: Xét ΔABC vuông tại B có BH là đường cao

nên BH*AC=BA*BC; BA^2=AH*AC; CB^2=CH*CA

=>BH*58=40*42=1680

=>BH=840/29(cm)

BA^2=AH*AC

=>AH=BA^2/AC=40^2/58=800/29cm

CB^2=CH*CA

=>CH=CB^2/CA=42^2/58=882/29(cm)

ΔBHA vuông tại H có HE là đường cao

nênBE*BA=BH^2

=>BE*40=(840/29)^2

=>BE=17640/841(cm)

ΔBHC vuông tại H có HF là đường cao

nênBF*BC=BH^2

=>BF*42=(840/29)^2

=>BF=16800/841(cm)

Xét tứ giác BEHF có

góc BEH=góc BFH=góc EBF=90 độ

=>BEHF là hình chữ nhật

=>góc BFE=góc BHE(=1/2*sđ cung BE)

=>góc BFE=góc BAC

Xét ΔBFE và ΔBAC có

góc BFE=góc BAC

góc FBE chung

Do đó: ΔBFE đồng dạng với ΔBAC
=>S BFE/S BAC=(BF/BA)^2=(16800/441:40)^2=(420/841)^2

=>S AECF=S ABC*(1-(420/841)^2)

=>\(S_{AECF}=\dfrac{1}{2}\cdot40\cdot42\cdot\left[1-\left(\dfrac{420}{841}\right)^2\right]\simeq630,5\left(cm^2\right)\)