Tam giác ABC : AB = 12cm; AC = 18cm. Gọi H là chân đường vuông góc kẻ từ B đến tia phân giác Å. Gọi M là trung điểm của BC. K là giao điểm của BH và AC. Tính HM ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC và ΔCBM có
BA/BC=BC/BM
góc B chung
=>ΔABC đồg dạng với ΔCBM
=>AC/CM=BC/BM=2/3
=>10/CM=2/3
=>CM=15cm
b: ΔABC đồng dạng với ΔCBM
=>góc ACB=góc CMB
mà góc CMB=góc ACM
nên góc ACB=góc ACM
=>CA là phân giác của góc MCB
Áp dụng định lý Py-ta-go vào tam giác vuông ABC ta có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow AC=\sqrt{BC^2-AB^2}\)
\(\Rightarrow AC=\sqrt{20^2-12^2}=16\left(cm\right)\)
Mà: \(sinB=\dfrac{AC}{BC}=\dfrac{16}{20}\)
\(\Rightarrow sinB=\dfrac{4}{5}\Rightarrow\widehat{B}\approx53^o\)
\(\Rightarrow\widehat{C}=180^o-90^o-53^o\approx37^o\)
\(S=\dfrac{12\cdot9}{2}=6\cdot9=54\left(cm^2\right)\)
Bài 1:
a: Xét ΔABC có BC^2=AB^2+AC^2
nên ΔABC vuông tại A
b: Vì AB<AC<BC
nên góc C<góc B<góc A
Áp dụng định lí PTG: \(AC=\sqrt{BC^2-AB^2}=16\left(cm\right)\)
Vậy \(S_{ABC}=\dfrac{1}{2}AB\cdot AC=\dfrac{1}{2}\cdot12\cdot16=96\left(cm^2\right)\)
c/m Tam giác ABH= Tam giác AKH (g-c-g)
=>AB=AK=18cm ; H t/đ BK
=>HM là đường trung bình của tam giác BKC.
=>2HM=KC=AC-AK=18-12=6cm
=>HM=3cm.