K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2020

A B C D E

Hình mik vẽ k đúng với câu b :D Chỉ minh họa thôi nhé !

a) Xét △ABC có AE là tia phân giác

\(\Rightarrow\frac{EB}{EC}=\frac{AB}{AC}\)

Vì AB = AD

\(\Rightarrow\frac{EB}{EC}=\frac{AD}{AC}\)

\(\Rightarrow\)AE // BD (Định lí Thales đảo)

b) Đổi : 120cm = 12 dm

Ta có : \(\frac{AB}{AC}=\frac{EB}{EC}\)

\(\Rightarrow\frac{EB}{AB}=\frac{EC}{AC}\)

Áp dụng tính chất dãy tỉ số bằng nhau , ta có :

\(\frac{EB}{AB}=\frac{EC}{AC}=\frac{EB+EC}{AB+AC}=\frac{BC}{8+12}=\frac{10}{20}=\frac{1}{2}\)

\(\Rightarrow\hept{\begin{cases}EB=\frac{1}{2}.AB=\frac{1}{2}.8=4dm\\EC=\frac{1}{2}.AC=\frac{1}{2}.12=6dm\end{cases}}\)

a: Xét ΔABC vuông tại A và ΔADE vuông tại A có

AB=AD

AC=AE

=>ΔABC=ΔADE

b: Xét ΔACE vuông tại A có AC=AE

nên ΔACE vuông cân tại A

góc ABD=góc AEC=45 độ

=>BD//EC

 

a: Xét ΔEAD và ΔBAC có 

AE=AB

\(\widehat{EAD}=\widehat{BAC}\)

AD=AC

Do đó: ΔEAD=ΔBAC

Suy ra: ED=BC

b: Xét ΔACD có AC=AD

nên ΔACD cân tại A

Xét ΔABE có AB=AE
nên ΔABE cân tại A

21 tháng 12 2021

a: Xét ΔABE và ΔAME có

AB=AM

\(\widehat{BAE}=\widehat{MAE}\)

AE chung

Do đó: ΔABE=ΔAME

26 tháng 11 2023

a: Xét ΔABD và ΔAED có

AB=AE

\(\widehat{BAD}=\widehat{EAD}\)

AD chung

Do đó: ΔABD=ΔAED

b: ΔABD=ΔAED

=>\(\widehat{ABD}=\widehat{AED}=90^0\)

=>DE\(\perp\)AC

c: ΔABD=ΔAED

=>DB=DE

=>D nằm trên đường trung trực của BE(1)

AB=AE
=>A nằm trên đường trung trực của BE(2)

Từ (1) và (2) suy ra AD là đường trung trực của BE

=>AD\(\perp\)BE

d: Xét ΔDBK và ΔDEC có

DB=DE

\(\widehat{BDK}=\widehat{EDC}\)

DK=DC

Do đó: ΔDBK=ΔDEC

=>BK=EC và \(\widehat{DBK}=\widehat{DEC}=90^0\)

Xét ΔAEK vuông tại E và ΔABC vuông tại B có

AE=AB

\(\widehat{EAK}\) chung

Do đó: ΔAEK=ΔABC

=>AK=AC

e: \(\widehat{ABK}=\widehat{ABD}+\widehat{KBD}\)

=>\(\widehat{ABK}=90^0+90^0=180^0\)

=>A,B,K thẳng hàng

a: Xét ΔABD và ΔAED có 

AB=AE

\(\widehat{BAD}=\widehat{EAD}\)

AD chung

Do đó: ΔABD=ΔAED

Suy ra: DB=DE

b: Xét ΔDBK và ΔDEC có 

\(\widehat{DBK}=\widehat{DEC}\)

BD=ED

\(\widehat{BDK}=\widehat{EDC}\)

Do đó: ΔDBK=ΔDEC

c: Ta có: AB+BK=AK

AE+EC=AC

mà AB=AE

và BK=EC

nên AK=AC

hay ΔAKC cân tại A

d: Ta có: ΔAKC cân tại A

mà AD là phân giác

nên AD là đường cao

25 tháng 12 2023

a: Xét ΔABE và ΔADE có

AB=AD

\(\widehat{BAE}=\widehat{DAE}\)

AE chung

Do đó: ΔABE=ΔADE

b: Ta có: ΔABE=ΔADE

=>EB=ED

=>E nằm trên đường trung trực của BD(1)

Ta có: AB=AD

=>A nằm trên đường trung trực của BD(2)

Từ (1) và (2) suy ra AE là đường trung trực của BD

=>AE\(\perp\)BD tại H và H là trung điểm của BD

c: Xét ΔEBM và ΔEDC có

EB=ED

\(\widehat{BEM}=\widehat{DEC}\)(hai góc đối đỉnh)

EM=EC

Do đó: ΔEBM=ΔEDC

=>\(\widehat{EBM}=\widehat{EDC}\) và BM=DC

Ta có: \(\widehat{EBM}=\widehat{EDC}\)

\(\widehat{EDC}+\widehat{ADE}=180^0\)(hai góc kề bù)

\(\widehat{ABE}=\widehat{ADE}\)(ΔABE=ΔADE)

Do đó: \(\widehat{EBM}+\widehat{EBA}=180^0\)

=>A,B,M thẳng hàng

Ta có: AB+BM=AM

AD+DC=AC

mà AB=AD và BM=DC

nên AM=AC

=>A nằm trên đường trung trực của MC(1)

Ta có: EM=EC

=>E nằm trên đường trung trực của MC(2)

Từ (1) và (2) suy ra AE là đường trung trực của MC

=>AE\(\perp\)MC

mà AE\(\perp\)BD

nên BD//MC