Cho ∆ABC có AE là phân giác. Trên tia đối của tia AC lấy điểm D sao cho AD = AB.
a/Chứng minh AE // BD.
b/Cho AB = 8 dm; AC = 120 cm và BC = 10 dm. Tính BE; EC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
AC=AE
=>ΔABC=ΔADE
b: Xét ΔACE vuông tại A có AC=AE
nên ΔACE vuông cân tại A
góc ABD=góc AEC=45 độ
=>BD//EC
a: Xét ΔEAD và ΔBAC có
AE=AB
\(\widehat{EAD}=\widehat{BAC}\)
AD=AC
Do đó: ΔEAD=ΔBAC
Suy ra: ED=BC
b: Xét ΔACD có AC=AD
nên ΔACD cân tại A
Xét ΔABE có AB=AE
nên ΔABE cân tại A
a: Xét ΔABE và ΔAME có
AB=AM
\(\widehat{BAE}=\widehat{MAE}\)
AE chung
Do đó: ΔABE=ΔAME
a: Xét ΔABD và ΔAED có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó: ΔABD=ΔAED
b: ΔABD=ΔAED
=>\(\widehat{ABD}=\widehat{AED}=90^0\)
=>DE\(\perp\)AC
c: ΔABD=ΔAED
=>DB=DE
=>D nằm trên đường trung trực của BE(1)
AB=AE
=>A nằm trên đường trung trực của BE(2)
Từ (1) và (2) suy ra AD là đường trung trực của BE
=>AD\(\perp\)BE
d: Xét ΔDBK và ΔDEC có
DB=DE
\(\widehat{BDK}=\widehat{EDC}\)
DK=DC
Do đó: ΔDBK=ΔDEC
=>BK=EC và \(\widehat{DBK}=\widehat{DEC}=90^0\)
Xét ΔAEK vuông tại E và ΔABC vuông tại B có
AE=AB
\(\widehat{EAK}\) chung
Do đó: ΔAEK=ΔABC
=>AK=AC
e: \(\widehat{ABK}=\widehat{ABD}+\widehat{KBD}\)
=>\(\widehat{ABK}=90^0+90^0=180^0\)
=>A,B,K thẳng hàng
a: Xét ΔABD và ΔAED có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó: ΔABD=ΔAED
Suy ra: DB=DE
b: Xét ΔDBK và ΔDEC có
\(\widehat{DBK}=\widehat{DEC}\)
BD=ED
\(\widehat{BDK}=\widehat{EDC}\)
Do đó: ΔDBK=ΔDEC
c: Ta có: AB+BK=AK
AE+EC=AC
mà AB=AE
và BK=EC
nên AK=AC
hay ΔAKC cân tại A
d: Ta có: ΔAKC cân tại A
mà AD là phân giác
nên AD là đường cao
a: Xét ΔABE và ΔADE có
AB=AD
\(\widehat{BAE}=\widehat{DAE}\)
AE chung
Do đó: ΔABE=ΔADE
b: Ta có: ΔABE=ΔADE
=>EB=ED
=>E nằm trên đường trung trực của BD(1)
Ta có: AB=AD
=>A nằm trên đường trung trực của BD(2)
Từ (1) và (2) suy ra AE là đường trung trực của BD
=>AE\(\perp\)BD tại H và H là trung điểm của BD
c: Xét ΔEBM và ΔEDC có
EB=ED
\(\widehat{BEM}=\widehat{DEC}\)(hai góc đối đỉnh)
EM=EC
Do đó: ΔEBM=ΔEDC
=>\(\widehat{EBM}=\widehat{EDC}\) và BM=DC
Ta có: \(\widehat{EBM}=\widehat{EDC}\)
\(\widehat{EDC}+\widehat{ADE}=180^0\)(hai góc kề bù)
\(\widehat{ABE}=\widehat{ADE}\)(ΔABE=ΔADE)
Do đó: \(\widehat{EBM}+\widehat{EBA}=180^0\)
=>A,B,M thẳng hàng
Ta có: AB+BM=AM
AD+DC=AC
mà AB=AD và BM=DC
nên AM=AC
=>A nằm trên đường trung trực của MC(1)
Ta có: EM=EC
=>E nằm trên đường trung trực của MC(2)
Từ (1) và (2) suy ra AE là đường trung trực của MC
=>AE\(\perp\)MC
mà AE\(\perp\)BD
nên BD//MC
Hình mik vẽ k đúng với câu b :D Chỉ minh họa thôi nhé !
a) Xét △ABC có AE là tia phân giác
\(\Rightarrow\frac{EB}{EC}=\frac{AB}{AC}\)
Vì AB = AD
\(\Rightarrow\frac{EB}{EC}=\frac{AD}{AC}\)
\(\Rightarrow\)AE // BD (Định lí Thales đảo)
b) Đổi : 120cm = 12 dm
Ta có : \(\frac{AB}{AC}=\frac{EB}{EC}\)
\(\Rightarrow\frac{EB}{AB}=\frac{EC}{AC}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{EB}{AB}=\frac{EC}{AC}=\frac{EB+EC}{AB+AC}=\frac{BC}{8+12}=\frac{10}{20}=\frac{1}{2}\)
\(\Rightarrow\hept{\begin{cases}EB=\frac{1}{2}.AB=\frac{1}{2}.8=4dm\\EC=\frac{1}{2}.AC=\frac{1}{2}.12=6dm\end{cases}}\)