Câu 3. Cho ∆ABC vuông tại A (AB < AC). Về phía ngoài ∆ABC vẽ hai tam
giác ABD và tam giác ACE vuông cân ở A.
Chứng minh BC = DE.
Chứng minh BD // CE.
Kẻ đường cao AH của ∆ABC cắt DE tại M. Vẽ đường thẳng qua A và vuông
góc MC cắt BC tại N. Chứng minh rằng CA NM.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!
rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ
\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)
a: Xét ΔAHB vuông tạiH và ΔCAB vuông tại A có
góc B chung
=>ΔAHB đồng dạng với ΔCAB
b: AH=3*4/5=2,4cm
c: ΔABC vuông tại A có HA là đường cao
nên AB^2=BH*BC
ta có
\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)
\(a+b-2\sqrt{ab}\ge0\)
\(a+b\ge2\sqrt{ab}\)
\(\frac{a+b}{2}\ge\sqrt{ab}\)
Ta có AH2=CH.BH=ab (1)
Gọi M là trung điểm của BC.
Xét tam giác AHM vuông tại H có AM là cạnh huyền --> AH\(\le\)AM (2)
Mà \(AM=\frac{BC}{2}=\frac{a+b}{2}\)(3)
Từ (1), (2) và (3) \(\Rightarrow a.b\le\frac{a+b}{2}\)
a: Xét ΔAKM vuông tại K và ΔANM vuông tại N có
AM chung
góc KAM=góc NAM
=>ΔAKM=ΔANM
=>MK=MN
b: BM=CM=3cm
AM=căn 5^2-3^2=4cm
c; AK=AN
MK=MN
=>AM là trung trực của KN
=>AM vuông góc KN
Câu 2:
Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=\left(2a\right)^2+\left(2a\sqrt{3}\right)^2=16a^2\)
=>BC=4a
Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}=\dfrac{1}{2}\)
nên \(\widehat{ABC}=30^0\)
ΔABC vuông tại A
=>\(\widehat{ABC}+\widehat{ACB}=90^0\)
=>\(\widehat{ACB}=60^0\)
Lấy điểm E sao cho \(\overrightarrow{AB}=\overrightarrow{BE}\)
=>B là trung điểm của AE
=>\(\widehat{CBE}+\widehat{CBA}=180^0\)(hai góc kề bù)
=>\(\widehat{CBE}=180^0-30^0=150^0\)
\(\overrightarrow{AB}\cdot\overrightarrow{BC}=\overrightarrow{BE}\cdot\overrightarrow{BC}\)
\(=BE\cdot BC\cdot cos\left(\overrightarrow{BE};\overrightarrow{BC}\right)\)
\(=2a\sqrt{3}\cdot4a\cdot cos150=-12a^2\)
\(\left|\overrightarrow{AB}-\overrightarrow{AC}\right|=\left|\overrightarrow{AB}+\overrightarrow{CA}\right|=\left|\overrightarrow{CB}\right|=CB=4a\)
Câu 3.
Tam giác \(ABC\)vuông cân tại \(A\)nên \(\widehat{ACB}=45^o\).
Tam giác \(BCD\)vuông cân tại \(B\)nên \(\widehat{BCD}=45^o\).
\(\widehat{ACD}=\widehat{ACB}+\widehat{BCD}=45^o+45^o=90^o\)
\(\Rightarrow AC\perp CD\)
mà \(AC\perp AB\)
nên \(AB//CD\)
suy ra \(ABCD\)là hình thang vuông.
Câu 4.
Kẻ \(BE\perp CD\)khi đó \(\widehat{BED}=90^o\).
Tứ giác \(ABED\)có \(4\)góc vuông nên là hình chữ nhật, mà \(AB=AD\)nên \(ABED\)là hình vuông.
\(BE=DE=AB=2\left(cm\right)\)
\(EC=CD-DE=4-2=2\left(cm\right)\)
Suy ra tam giác \(BEC\)vuông cân tại \(E\)
Suy ra \(\widehat{EBC}=\widehat{ECB}=45^o\)
\(\widehat{ABC}=\widehat{ABE}+\widehat{EBC}=90^o+45^o=135^o\)
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
=>BA^2=BH*BC
b: ΔACB vuông tại A có AH vuông góc BC
nên AH^2=HB*HC
c: ΔAHB vuông tại H có HM vuông góc AB
nên AM*AB=AH^2
ΔAHC vuông tại H co HN vuông góc AC
nên AN*AC=AH^2
=>AM*AB=AN*AC
=>AM/AC=AN/AB
=>ΔAMN đồng dạng vơi ΔACB
\(\text{Pytago: }AC=\sqrt{BC^2-AB^2}=4\left(cm\right)\\ \sin B=\dfrac{AC}{BC}=\dfrac{4}{5}\approx\sin53^0\\ \Rightarrow\widehat{B}\approx53^0\\ \Rightarrow\widehat{C}=90^0-\widehat{B}\approx37^0\)