Cho hthang ABCD ; AB=4cm ,CD=12cm , AD=8cm , \(\widehat{ADC}\)= 30 độ . Tính diện tích của ABCD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Kẻ đường cao $AE$ và $BF$ của hình thang. Ký hiệu \(DE=a, EF=b, FC=c\)
Có \(\widehat{EAB}=180^0-\widehat{AEF}=180^0-90^0=90^0\). Như vậy tứ giác $ABFE$ có ba góc vuông nên là hình chữ nhật
\(\Rightarrow AB=EF=b\)
\(\Rightarrow AB+CD=2b+a+c=15\)
Áp dụng định lý Pitago cho các tam giác vuông:
\(AE^2+EC^2=AC^2\Leftrightarrow AE^2+(b+c)^2=144(1)\)
\(BF^2+DF^2=BD^2\Leftrightarrow BF^2+(a+b)^2=81(2)\)
Lấy \((1)-(2)\Rightarrow (b+c-a-b)(a+2b+c)=63\) (do \(AE=BF\) )
\(\Leftrightarrow (c-a).15=63\Rightarrow c-a=4,2\)
\(\Rightarrow 15=a+2b+c=a+2b+a+4,2\)
\(\Rightarrow b+a=5,4\)
Thay vào (2) suy ra: \(BF^2=\frac{1296}{25}\Rightarrow BF=7,2\)
\(S_{ABCD}=\frac{(AB+CD).BF}{2}=\frac{15.7,2}{2}=54\)
Kẻ BE//AC, E thuộc CD
Xét tứ giác ABEC có
AB//EC
AC//BE
=>ABEC là hình bình hành
=>AC=BE
=>BE=BD
=>ΔBED cân tại B
=>góc BDE=góc BED
=>góc BDE=góc BAC
Xét tứ giác ABCD có góc BDC=góc BAC
nên ABCD là tứ giác nội tiếp
=>góc BAD+góc BCD=180 độ
mà góc ADC+góc BAD=180 độ
nên góc ADC=góc BCD
=>ABCD là hình thang cân
a) Có AD=BC=5a, AC=12a
Xét tam giác ABC vuộng tại C=> AB^2 =169a^2 <=> AB= 13a ( đlý Pitago )
Xét tam giác ABC vuộng tại C, có: SinABC =12a/13a, CosABC= 5a/13a
=> ( sin B + cosB )/ (sinB -cosB) = ( 12a/13a + 5a/13a)/(12a/13a - 5a/13a)= 17/7
b) Trong tam giác ADC, Kẻ AH vuông góc DC
Trong tam giác ACB, Kẻ CK vuông góc AB
Có AB//DC ( t/c hình thang)
mà AD vuông góc DC
=> AD vuông góc AB (1)
Tương tự có CK vuông góc DC (2)
(1)(2) => tứ giác ABCD là hcn ( dhnb hcn)
=> AD=CK
Xét tam giác ABC vuông tại C có CK là đường cao AB
<=> AB.CK= CB.CA
=> 13a.CK = 5a.12a
<=> CK= (60/13)a = AH
Xét tam giác AHC vuông tại H có HC= (144/13)a ( pitago)
Xét tam giác AHD vuông tại H có HD= (25/13)a ( pitago)
Mà H nằm giữa DC => DC = HC + HD = 13a
=> S ABCD= 1/2AH(AB+CD)= 1/2. (60/13)a. (13a +13a)= 60 a^2 (đvdt)
Chúc bạn học tốt!!!!!!