Cho tam giác ABC vuông cân tại A. M là trung điểm của BC. G là trọng tâm của tam giác ABC biết GM=1,5 cm ; AB= 5 cm
Tính AC và chu vi tam giác ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nhìn vào hình vẽ nhá, tớ gửi hình trước cho cậu dễ thấy thôi:
a) xét 2 tam giác vuông: ABH VÀ ACH, CÓ:
AH LÀ CẠNH CHUNG
AB = AC (VÌ TAM GIÁC ABC CÂN TẠI A)
=> \(\Delta ABH=\Delta ACH\) (CẠNH HUYỀN - CẠNH GÓC VUÔNG)
a) Xét tam giác ABH và tam giác ACH
có AB = AC
AH cạnh chung
\(\Rightarrow\)tam giác ABH = tam giác ACH
Lần sau chép đề cẩn thận nhé. Sai tùm lum.
a, ΔAHB = ΔAHC.
Xét hai tam giác vuông AHB và AHC có:
AB = AC (hai cạnh bên)
^B = ^C (hai góc ở đáy)
Do đó: ΔAHB = ΔAHC (cạnh huyền - góc nhọn)
b, ΔDHC cân. DM//AH. (sửa M là trung điểm HC nhé ! )
Vì HD//BA (gt) => ^B = ^H1 (đồng vị)
Mà ^B = ^C => ^H1 = ^C => ΔDHC cân tại D (hai góc ở đáy)
Xét ΔDHM và ΔDCM có:
DH = DC (hai cạnh bên)
HM = MC (M là trung điểm của HC)
DM : chung
Do đó: ΔDHM = ΔDCM (c.c.c)
=> ^M1 = ^M2 (hai góc tương ứng)
Mà ^M1 + ^M2 = 180o (kề bù)
=> ^M1 = ^M2 = 180o : 2 = 90o hay DM ⊥ BC.
Vậy DM // AH (cùng vuông góc với BC).
c, G là trọng tâm ΔABC. AH + BD > 3HD.
Ta có: ^H2 = ^A1 (so le trong)
Mà ^A1 = ^A2 (hai góc tương ứng)
=> ^H2 = ^A2 => ΔHDA cân tại D (hai góc ở đáy)
=> DA = DH (hai cạnh bên)
Vì DH = DC (hai cạnh bên)
DA = DH (hai cạnh bên)
=> DA = DC
=> BD là trung tuyến ứng với cạnh bên AC.
Vì BH = HC (hai cạnh tương ứng) => AH là trung tuyến ứng với cạnh đáy BC.
Mà AC cắt BC tại G => CG là trung tuyến ứng với cạnh bên AB
=> G là trọng tâm của ΔABC.
a) Xét tam giác ABC vuông tại A, áp dụng định lý Pytago ta có :
\(BC^2=AB^2+AC^2=5^2+12^2=25+144=169=13^2\)
Mà BC>0 nên BC = 13 cm.
Vậy BC = 13 cm.
b) AM là đường trung tuyến ứng với cạnh huyền nên \(AM=\frac{1}{2}BC=\frac{13}{2}=6,5\)(cm)
Vậy AM = 6,5 cm.
c) G là trọng tâm tam giác nên ta có \(AG=\frac{2}{3}AM=\frac{2}{3}.6,5=\frac{13}{3}\)(cm)
Vậy AG = 13/3 cm.
a: OM//AH
ON//BH
MN//AB
=>góc BAH=góc OMN và góc ABH=góc ONM
=>ΔABH đồng dạng với ΔMNO
b: A,G,M thẳng hàng và H,G,O thẳng hàng
=>góc AGH=góc MGO
=>ΔAHG đồng dạng với ΔMOG
=>OM/AH=MG/AG
=>OM/AH=MN/AB=1/2
=>GM/GA=1/2
=>G là trọng tâm của ΔACB
a) Ta có: ΔABC vuông tại A(gt)
mà AM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)
nên \(AM=\dfrac{1}{2}BC\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)