Cho tam giác ABC vuông tại A, đường cao AA'. gọi E; F lần lượt hình chiếu của A' trên AC; AB.
Chứng minh: CE/ BF = AC3/AB3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 phần thôi nhé
Nối BE, Gọi P là giao điểm của AD với BE.
Áp dụng định lí Ceva cho tam giác ABE => AH/HE=BP/PE=> HP//AB(1).
Từ (1)=> Tam giác AHP cân tại H=> AH=HP.(2)
Ta cần chứng minh AD//CE <=> DP//CE <=> BD/BC=BP/BE <=> BD/BC=1-(EP/BE).(3)
Mà EP/BE=HP/AB (do (1))=> EP/BE= AH/AB=HD/DB (do (2) và tc phân giác). (4)
Khi đó (3)<=> BD/BC=1-(HD/DB) hay (BD/BC)+(HD/DB)=1 <=> BD^2+HD*BC=BC*DB
<=> BD^2+HD*BC= (BD+DC)*BD <=> BD^2+HD*BC= BD^2+BD*DC <=> HD*BC=BD*DC
<=> HD/DB=CD/BC <=> AH/AB=CD/BC. (5)
Chú ý: Ta cm được: CA=CD (biến đổi góc).
Nên (5) <=> AH/AB=CA/BC <=> Tg AHB đồng dạng Tg CAB.( luôn đúng)
=> DpCm.
A B C F A' E
Theo hệ thức lượng trong tam giác vuông :
\(\Delta ABC\)có :\(BA'=\frac{AB^2}{BC};CA'=\frac{AC^2}{BC}\)
\(\Delta BDA\)có :\(BF=\frac{BA'^2}{AB}=\left(\frac{AB^2}{BC}\right)^2:AB=\frac{AB^3}{BC^2}\)
\(\Delta DAC\)có :\(CE=\frac{CA'^2}{AC}=\left(\frac{AC^2}{BC}\right)^2:AC=\frac{AC^3}{BC^2}\)
\(\Rightarrow\frac{CE}{BF}=\frac{AC^3}{BC^2}:\frac{AB^3}{BC^2}=\frac{AC^3}{AB^3}\)
a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{HBA}\) chung
Do đó: ΔHBA\(\sim\)ΔABC(g-g)
b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{1}{15^2}+\dfrac{1}{20^2}=\dfrac{625}{90000}\)
\(\Leftrightarrow AH=12\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+BH^2\)
\(\Leftrightarrow BH^2=15^2-12^2=81\)
hay BH=9(cm)
Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:
\(AC^2=AH^2+CH^2\)
\(\Leftrightarrow CH^2=AC^2-AH^2=20^2-12^2=256\)
hay CH=16(cm)
a: Xét tứ giác AEHD có
\(\widehat{AEH}+\widehat{ADH}=90^0+90^0=180^0\)
=>AEHD là tứ giác nội tiếp
Xét tứ giác BEDC có \(\widehat{BEC}=\widehat{BDC}=90^0\)
nên BEDC là tứ giác nội tiếp
b: Xét (O) có
\(\widehat{D'E'C}\) là góc nội tiếp chắn cung D'C
\(\widehat{D'BC}\) là góc nội tiếp chắn cung D'C
Do đó: \(\widehat{D'E'C}=\widehat{D'BC}\left(1\right)\)
Ta có: BEDC là tứ giác nội tiếp
=>\(\widehat{DEC}=\widehat{DBC}\)
=>\(\widehat{HED}=\widehat{D'BC}\left(2\right)\)
Từ (1),(2) suy ra \(\widehat{HED}=\widehat{HE'D'}\)
mà hai góc này là hai góc ở vị trí đồng vị
nên DE//D'E'
Kẻ tiếp tuyến Ax của (O')
=>Ax\(\perp\)OA tại A
Xét (O) có
\(\widehat{xAB}\) là góc tạo bởi tiếp tuyến Ax và dây cung AB
\(\widehat{ACB}\) là góc nội tiếp chắn cung AB
Do đó: \(\widehat{xAB}=\widehat{ACB}\)
mà \(\widehat{ACB}=\widehat{AED}\left(=180^0-\widehat{BED}\right)\)
nên \(\widehat{xAB}=\widehat{AED}\)
mà hai góc này là hai góc ở vị trí so le trong
nên Ax//ED
Ta có: Ax//ED
OA\(\perp\)Ax
Do đó: OA\(\perp\)ED
c: Xét (O) có
ΔABA' nội tiếp
A'A là đường kính
Do đó: ΔABA' vuông tại B
=>AB\(\perp\)BA'
Xét (O) có
ΔACA' nội tiếp
A'A là đường kính
Do đó: ΔACA' vuông tại C
=>AC\(\perp\)CA'
Ta có: AC\(\perp\)CA'
BH\(\perp\)AC
Do đó: BH//A'C
Ta có: AB\(\perp\)BA'
CH\(\perp\)AB
Do đó: CH//BA'
Xét tứ giác BHCA' có
BH//CA'
BA'//CH
Do đó: BHCA' là hình bình hành
=>BC cắt HA' tại trung điểm của mỗi đường
mà I là trung điểm của BC
nên I là trung điểm của HA'
=>H,I,A' thẳng hàng