K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2018

Bạn tự vẽ hình nhé

Ta có: BD=BC(D đối xứng cới C qua B)

mà AB=BC nênAB=DC/2

=>ADC vuông tại A

Áp dụng đl pytago cho tam giác vuông ADC:

AC2+AD2=DC2

=>AD2=DC2-AC2

=>AD2=(BD+BC)2-AC2

=>AD2=202-162

=>AD2=400-256=144

=>AD=12cm

12 tháng 5 2021

ta có

AB<AC<BC (12<16<20)

=> góc đối diện của cạnh AB bé nhất : góc C

=> góc đối diện với cạnh BC lớn nhất : góc A

=>góc C < góc B < góc A

cosB=(16^2+BC^2-14^2)/(2*16*BC)

=>BC^2+60=32*BC*cos40

=>BC=21,76cm

S ABC=1/2*21,76*16*sin40=111,90cm2

20 tháng 1 2022

20 tháng 2 2020

Xét △BHC vuông tại H có: BH2 + HC2​ = BC2​ (định lý Pytago)

=> BH2​ + 162​ = 202​ 

=> BH2​ = 202​ - 162​ = 400 - 256 = 144

=> BH = 12 (cm)

Xét  △BHA vuông tại H có: BH2 + AH2 = AB2 (định lý Pytago)

=> 122 + 92 = AB2 

=> AB2 = 144 + 81 = 225

=> AB = 15 (cm)

Ta có: AC = AH + HC = 9 + 16 = 25

Xét △ABC có: 

AC2 = 252 = 625

AB2 + BC2 = 152 + 202 = 225 + 400 = 625

=> AC2 = AB2 + AC2 

=> △ABC vuông tại A

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+BH^2\)

\(\Leftrightarrow AB^2=12^2+16^2=400\)

hay AB=20(cm)

Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:

\(AC^2=AH^2+HC^2\)

\(\Leftrightarrow HC^2=AC^2-AH^2=20^2-12^2=256\)

hay HC=16(cm)

Ta có: BH+HC=BC(H nằm giữa B và C)

nên BC=16+16=32(cm)

Chu vi của tam giác ABC là:

\(C_{ABC}=AB+BC+AC=20+32+20=72\left(cm\right)\)

AH
Akai Haruma
Giáo viên
29 tháng 3 2021

Lời giải:

Áp dụng định lý Pitago cho tam giác $AHC$ vuông tại $H$:

$HC=\sqrt{AC^2-AH^2}=\sqrt{20^2-12^2}=16$ (cm)

Áp dụng định lý Pitago cho tam giác $AHB$ vuông tại $H$:

$AB=\sqrt{AH^2+BH^2}=\sqrt{12^2+16^2}=20$ (cm)

Chu vi tam giác $ABC$:

$AB+BC+AC=AB+BH+CH+AC=20+16+16+20=72$ (cm)

11 tháng 5 2022

Do tam giác ABC cân AB =4cm, AC = 8cm => BC = 8cm

Chu vi tam giác sẽ là: 4 +8 +8 = 20cm

Đáp án C

Các bạn muốn giải đáp thắc mắc hoặc kèm thêm toán thì có thể liên hệ nhé

11 tháng 5 2022

Do tam giác ABC cân AB =4cm, AC = 8cm => BC = 8cm

Chu vi tam giác sẽ là: 4 +8 +8 = 20cm

NV
20 tháng 3 2023

Do tam gaics ABC vuông tại A nên:

\(S_{ABC}=\dfrac{1}{2}AB.AC=96\left(cm^2\right)\)

8 tháng 2 2021

A B C 16 12 H

1) Có \(\Delta ABC\) vuông 

=> S\(\Delta ABC\) = \(\dfrac{AB.AC}{2}\) = \(\dfrac{16.12}{2}\) = 96 (cm2)

2) Có \(\Delta ABC\) vuông , theo định lý Pytago ta có :

 AB +  AC2 =  BC2

=> 162 + 122 = BC2

=> 400            = BC2

=> BC             = 20 (cm)

Ta có :  S\(\Delta ABC\)  =  S\(\Delta ABH\)  +  S\(\Delta ACH\)

=>  \(\dfrac{BH.AH}{2}+\dfrac{HC.AH}{2}=S\Delta ABC\)

=>  \(\dfrac{BH.AH+HC.AH}{2}=S\Delta ABC\)

=> \(\dfrac{AH.\left(BH+HC\right)}{2}=S\Delta ABC\)

=> \(\dfrac{AH.BC}{2}\)               =  96

=> AH                         =  96 .  \(\dfrac{2}{BC}\) = 96 .  \(\dfrac{2}{20}\) = 9.6 (cm)

3) Có \(\Delta ABH\) vuông , theo định lý Pytago ta có :

    BH2 = AB2 - AH2

=>BH= 162 - 9.62 = 163.84

=> BH = 12.8 (cm)

=> CH = BC - BH = 20 - 12.8 = 7.2 (cm)

 

26 tháng 3 2018

Vì AB > BC > AC ⇒ ∠C > ∠A > ∠B . Chọn D