K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2017

B A D M C E K I H

31 tháng 7 2018

a, Bạn chứng minh được \(\Delta ABD\infty\Delta BDC\left(g.g\right)\)

\(\Rightarrow\frac{AB}{BD}=\frac{BD}{DC}\Rightarrow AB.DC=BD^2\Rightarrow2.8=BD^2\Rightarrow BD^2=16\Rightarrow BD=4\left(cm\right)\)(vì AB = 2cm , CD = 8 cm)

Ta có: \(\frac{BD}{CD}=\frac{4}{8}=\frac{1}{2}\)

Xét tam giác BDC vuông tại B có: BD = 1/2 CD nên \(\widehat{C}=30^0\)

ABCD là hình thang vuông(gt) \(\Rightarrow AB//CD\)

 \(\Rightarrow\widehat{ABC}+\widehat{C}=180^0\) ( 2 góc trong cùng phía)

\(\Rightarrow\widehat{ABC}+30^0=180^0\) (do góc C = 30 độ)

\(\Rightarrow\widehat{ABC}=150^0\)

b, Áp dụng định lí Pitago vào tam giác ABD vuông tại A, tính được: \(AD=\sqrt{12}\left(cm\right)\)

Diện tích hình thang ABCD là: 

                         \(\frac{\left(2+8\right).\sqrt{12}}{2}=5\sqrt{12}\left(cm^2\right)\) 

Chúc bạn học tốt.

1 tháng 5 2020

thang cho dung hoi nua

19 tháng 8 2018

Tam giác ACD vuông tại C có góc CAD = góc ABC = 60 độ   (cùng phụ với CAB)

=>  AC = 2AD

Áp dụng Pytago ta có:

AC2 = AD2 + DC2

<=>  4AD2 = AD2 + 900

<=>  AD2 = 300

<=> \(AD=10\sqrt{3}\)

Kẻ CH vuông với AB

AHCD là hình chữ nhật  (có góc A=D=H = 900)

=>  AH = CD = 30;   CH = AD = \(10\sqrt{3}\)

Tgiac ACB vuông tại C, ta có:

CH2 =HA.HB

=>  \(HB=\frac{CH^2}{HA}=10\)

=>   AB = AH + HB = 40

\(S_{ABCD}=\frac{1}{2}CH.\left(AB+CD\right)=350\sqrt{3}\)

19 tháng 8 2018

Tam giác ACD vuông tại C có góc CAD = góc ABC = 60 độ   (cùng phụ với CAB)

=>  AC = 2AD

Áp dụng Pytago ta có:

AC2 = AD2 + DC2

<=>  4AD2 = AD2 + 900

<=>  AD2 = 300

<=> \(AD=10\sqrt{3}\)

Kẻ CH vuông với AB

AHCD là hình chữ nhật  (có góc A=D=H = 900)

=>  AH = CD = 30;   CH = AD = \(10\sqrt{3}\)

Tgiac ACB vuông tại C, ta có:

CH2 =HA.HB

=>  \(HB=\frac{CH^2}{HA}=10\)

=>   AB = AH + HB = 40

\(S_{ABCD}=\frac{1}{2}CH.\left(AB+CD\right)=350\sqrt{3}\)

19 tháng 8 2018

Tam giác ACD vuông tại C có góc CAD = góc ABC = 60 độ   (cùng phụ với CAB)

=>  AC = 2AD

Áp dụng Pytago ta có:

AC2 = AD2 + DC2

<=>  4AD2 = AD2 + 900

<=>  AD2 = 300

<=> \(AD=10\sqrt{3}\)

Kẻ CH vuông với AB

AHCD là hình chữ nhật  (có góc A=D=H = 900)

=>  AH = CD = 30;   CH = AD = \(10\sqrt{3}\)

Tgiac ACB vuông tại C, ta có:

CH2 =HA.HB

=>  \(HB=\frac{CH^2}{HA}=10\)

=>   AB = AH + HB = 40

\(S_{ABCD}=\frac{1}{2}CH.\left(AB+CD\right)=350\sqrt{3}\)

a: Kẻ BH vuông góc CD

Xét tứ giác ABHD có

góc BAD=góc ADH=góc BHD=90 độ

AB=AD

=>ABHD là hình vuông

=>BH=HD=AB=DC/2

=>góc BDH=45 độ

DH=DC/2

=>H là trung điểm của DC

Xét ΔBDC có

BH vừa là đường cao, vừa là trung tuyến

=>ΔBDC cân tại B

=>góc C=45 độ

=>góc ABC=135 độ

c: DC=2*3=6cm

AD=AB=3cm

BC=căn 3^2+3^2=3*căn 2cm

C=6+3+3+3căn 2=12+3căn 2(cm)

\(2,\)

A B H C D

Kẻ BH vuông góc với CD tại H

Xét hai tam giác BDH và BCH:

+) BH là cạnh chung

+) Góc BHD = góc BHC = 90 độ

+) DH = CH 

=> Tam giác BDH = tam giác HCH (c.g.c)

=> BD = BC

Khác: DC = BC

=> BC = CD = DB => Tam giác BCD đều => Góc C = 60 độ

Mà: AB // CD => Góc B + góc C = 180 độ => Góc B = góc ABC = 180 độ - 60 độ = 120 độ