K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2019

đăng đúng môn nha bn

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+HB^2\)

\(\Leftrightarrow HB^2=4^2-2^2=12\)

\(\Leftrightarrow HB=2\sqrt{3}\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow HC=\dfrac{2^2}{2\sqrt{3}}=\dfrac{2\sqrt{3}}{3}\)

27 tháng 7 2021

cảm ơn

khocroi

4 tháng 4 2020

a, Xét △BAH vuông tại H có: HBA + BAH = 90o (tổng 2 góc nhọn trong △vuông)

Ta có: BAC = BAH + HAC  => BAH + HAC = 90o

=> HBA = HAC  => HBA = KAD

Xét △HBA vuông tại H và △KAD vuông tại K

Có: HBA = KAD (cmt)

       AB = AD (gt)

=> △HBA = △KAD (ch-gn)

b, Vì BC ⊥ AH (gt)  => HE ⊥ HK

và AH ⊥ KD (gt) => HK ⊥ KD

=> HE // KD (từ vuông góc đến song song)

Xét △HKD vuông tại K và △DEH vuông tại E

Có: HD là cạnh chung

       KHD = HDE (HE // KD)

=> △HKD = △DEH (ch-gn)

c, Vì △HKD = △DEH (cmt)

=> KD = EH (2 cạnh tương ứng)

Mà AH = KD (△HBA = △KAD)

=> AH = EH

16 tháng 5 2019

a, xét tam giác ABH và tam giác DBH có : BH chung

góc AHB = góc DHB = 90 

AH = HD (gt)

=> tam giác AHB = tam giác DBH (2cgv)

16 tháng 5 2019

a) Xét  \(\Delta ABH\)và \(\Delta DBH\)

ta có AH = DH (gt)

\(\widehat{AHB}=\widehat{DHB}=\left(90^0\right)\)

BH chung

nên \(\Delta ABH=\Delta DBH\left(c-g-c\right)\)

b) Dễ chứng minh \(\Delta AHC=\Delta DHC\left(c-g-c\right)\)

\(\Rightarrow\widehat{ACH}=\widehat{DCH}\)

do đó CH là tpg của \(\widehat{ACD}\)

c) Dễ chứng minh \(\Delta BHD=\Delta EHA\left(g-c-g\right)\)

\(\Rightarrow BH=HE\)

Xét \(\Delta ABH\)và \(\Delta DEH\)

ta có BH = HE (cmt)

\(\widehat{AHB}=\widehat{DHE}\left(=90^0\right)\)

AH = DH (gt)

nên \(\Delta ABH=\Delta DEH\left(c-g-c\right)\)

suy ra \(\widehat{ABH}=\widehat{EDH}\)

mà hai góc này ở vị trí so le trong 

do đó AB // DE

30 tháng 11 2019

Diện tích tam giác vuông đó : 

       ( 3 . 4 ) : 2 = 6 ( cm2 )

#Riin

30 tháng 11 2019

(3+4)/2=(cm^2)

29 tháng 9 2020

∆ABC có hai đường cao BD, CR cắt nhau tại H

a) ∆BDC có H là trung điểm của DC (gt) và M là trung điểm của BC => HM là đường trung bình của tam giác => HM // BD

Mà HM⊥EF nên BD⊥EF. ∆BDH có BE và HE là hai đường cao nên E là trực tâm của ∆BDH => DE⊥BH (đpcm)

b) Kẻ FJ⊥CH cắt BH tại S

∆SHC có hai đường cao CF và SJ nên HF là đường cao thứ ba => HF⊥SC

Mà HF⊥HM => HM // SC mà M là trung điểm của BC nên H là trung điểm của BS

Xét ∆BRH và ∆SJH có:

          ^BRH = ^SJH (= 900)

          BH = SH (cmt)

          ^BHR = ^SHJ (đối đỉnh)

Do đó ∆BRH = ∆SJH (ch - gn) 

=> HR = HJ (hai cạnh tương ứng)

Xét ∆ERH và ∆FJH có:

          ^ERH = ^FJH (= 900 )

          HR = HJ (cmt)

          ^EHR = ^FHJ (đối đỉnh)

Do đó ∆ERH = ∆FJH (cgv - gnk)

=> EH = FH (hai cạnh tương ứng) (đpcm)