Cho tam giác ABC; A=90°, AB=6cm, AC=8cm trung tuyến AE. Kẻ đường cao AD; lấy H là trung điểm của AB, G đối xứng với D qua H a, tứ giác ADBG là hình gì b, tính diện tích tam giác ABE c, lấy M đối xứng với A qya D kẻ HJ vuống góc với BD tại J. Chứng minh DG//BM và G, J, M thẳng hàng
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
TB
0
TB
2
30 tháng 6 2016
Mik ko giải chi tiết đc p thứ lỗi nhé: Đ/S:
Lấy H sao cho BH = 1 cm
2 tháng 5 2017
Giải:
a, Ta có: \(AB^2+AC^2=6^2+8^2=100\)
\(BC^2=100\)
\(\Rightarrow AB^2+AC^2=BC^2\)
\(\Rightarrow\Delta ABC\) vuông tại A ( đpcm )
b, \(\Delta ABC\) vuông tại A có AM là trung tuyến
\(\Rightarrow AM=\dfrac{1}{2}BC\Rightarrow AM=5\)
Mà \(AG=\dfrac{2}{3}.AM\Rightarrow AG=\dfrac{10}{3}\left(cm\right)\)
Vậy...
a: Xét tứ giác ADBG có
H là trung điểm chung của AB và DG
góc ADB=90 độ
Do đó: ADBG là hình chữ nhật
b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
EA=EB=10/2=5cm
P=(5+5+6)/2=16/2=8cm
\(S=\sqrt{8\cdot\left(8-5\right)\left(8-5\right)\left(8-6\right)}=\sqrt{8\cdot2\cdot3^2}=4\cdot3=12\left(cm^2\right)\)