cho hệ phương trình: 2mx+y=2 ; 8x +my=m+2
tìm m để 4x+3y=7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay m = 2 vào hệ ta được x + y = 2 2 x + y = 3
Khi đó x + y = 2 2 x + y = 3 ⇔ x + y = 2 x = 1 ⇔ x = 1 y = 1
Vậy hệ phương trình có nghiệm duy nhất (1; 1) khi m = 2
Đáp án: D
Đáp án D
Vậy hệ phương trình có nghiệm duy nhất (1; 1) khi m = 2
Mình mạn phép sửa lại phương trình $2$ của bạn là $mx+3y=1$ nhé.
ĐK: $m\neq 0$
a) Khi $m=2,$ hệ phương trình là:
\(\left\{{}\begin{matrix}-4x+y=5\\2x+3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-4x+y=5\\4x+6y=2\end{matrix}\right.\Rightarrow7y=7\Leftrightarrow y=1\Rightarrow x=-1\)
b) \(\left\{{}\begin{matrix}-2mx+y=5\\mx+3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2mx+y=5\\2mx+6y=2\end{matrix}\right.\Rightarrow7y=7\Leftrightarrow y=1\Rightarrow x=-\dfrac{2}{m}\)
c) Do ta luôn có $y=1$ là số dương nên chỉ cần chọn $m$ sao cho:
\(x=-\dfrac{2}{m}>0\Leftrightarrow m< 0\)
d) \(x^2+y^2=1\Leftrightarrow\left(-\dfrac{2}{m}\right)^2+1^2=1\Leftrightarrow\dfrac{4}{m^2}=0\) (vô lý)
Vậy không tồn tại $m$ sao cho $x^2+y^2=1.$
2mx+y=2 và 8x+my=m+2
=>y=2-2mx và 8x+m(2-2mx)=m+2
=>\(\left\{{}\begin{matrix}8x+2m-2m^2x-m-2=0\\y=-2mx+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\left(-2m^2+8\right)=-m+2\\y=-2mx+2\end{matrix}\right.\)
=>2(m-2)(m+2)x=m-2 và y=-2mx+2
Nếu m=2 thì hệpt có vô số nghiệm
Nếu m=-2 thìhệ pt vn
Nếu m<>2; m<>-2 thì hệ phương trình có nghiệm duy nhất là:
\(\left\{{}\begin{matrix}x=\dfrac{1}{2\left(m+2\right)}\\y=-2m\cdot\dfrac{1}{2\left(m+2\right)}+2=-\dfrac{m}{m+2}+2=\dfrac{-m+2m+4}{m+2}=\dfrac{m+4}{m+2}\end{matrix}\right.\)
Để hệ phương trình − m x + y = − 2 m x + m 2 y = 9 nhận cặp (1; 2) làm nghiệm thì − m .1 + 2 = − 2 m 1 + m 2 2 = 9 ⇔ m = − 2 m = ± 2 ⇒ m = − 2
Vậy m = −2
Đáp án: C
Mình giải bằng định thức Grane nhé :
\(D=-6m-m=-7m\)
\(D_x=15-1=14\)
\(D_y=-2m-5m=-7m\)
Để hệ phương trình có nghiệm thì \(\orbr{\begin{cases}D\ne0\\D=D_x=D_y=0\end{cases}}\)
TH1. \(D\ne0\Rightarrow m\ne0\) , hệ phương trình có nghiệm \(\hept{\begin{cases}x=\frac{D_x}{D}=\frac{14}{-7m}=-2m\\y=\frac{D_y}{D}=\frac{-7m}{-7m}=1\end{cases}}\)
TH2. \(D=D_x=D_y=0\)
Ta nhận thấy ngay \(D_x=14\ne0\), do vậy trường hợp này không xảy ra.
Vậy để hệ phương trình có nghiệm thì \(m\ne0\)
a: Khi m=-1 thì hệ phương trình sẽ là:
\(\left\{{}\begin{matrix}x\cdot2\cdot\left(-1\right)-3y=2\cdot\left(-1\right)-1\\4x-\left(-1+5\right)y=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-2x-3y=-3\\4x-4y=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-4x-6y=-6\\4x-4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-6y-4y=-6+2\\x-y=\dfrac{1}{2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-10y=-4\\x-y=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2}{5}\\x=\dfrac{1}{2}+\dfrac{2}{5}=\dfrac{9}{10}\end{matrix}\right.\)
b: Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{2m}{4}\ne-\dfrac{3}{-\left(m+5\right)}\)
=>\(\dfrac{m}{2}\ne\dfrac{3}{m+5}\)
=>\(m^2+5m\ne6\)
=>\(m^2+5m-6\ne0\)
=>\(\left(m+6\right)\left(m-1\right)\ne0\)
=>\(m\notin\left\{-6;1\right\}\)
c: \(\left\{{}\begin{matrix}2mx-3y=2m-1\\4x-\left(m+5\right)y=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}4mx-6y=4m-2\\4mx-\left(m^2+5m\right)y=2m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-6y+\left(m^2+5m\right)y=2m-2\\4x-\left(m+5\right)y=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y\left(m^2+5m-6\right)=2m-2\\4x-\left(m+5\right)y=2\end{matrix}\right.\)(1)
Khi \(m\notin\left\{-6;1\right\}\) thì hệ phương trình (1) sẽ trở thành:
\(\left\{{}\begin{matrix}y=\dfrac{2m-2}{m^2+5m-6}=\dfrac{2\left(m-1\right)}{\left(m+6\right)\left(m-1\right)}=\dfrac{2}{m+6}\\4x=2+\left(m+5\right)y=2+\dfrac{2m+10}{m+6}=\dfrac{4m+22}{m+6}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{2}{m+6}\\x=\dfrac{4m+22}{4m+24}=\dfrac{2m+11}{2m+12}\end{matrix}\right.\)
Để hệ có nghiệm duy nhất thỏa mãn x>0 và y>0 thì \(\left\{{}\begin{matrix}m\notin\left\{-6;1\right\}\\\dfrac{2}{m+6}>0\\\dfrac{2m+11}{2m+12}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\notin\left\{-6;1\right\}\\m+6>0\\\dfrac{2m+11}{m+6}>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\ne1\\m>-6\\\left[{}\begin{matrix}\left\{{}\begin{matrix}2m+11>0\\m+6>0\end{matrix}\right.\\\left\{{}\begin{matrix}2m+11< 0\\m+6< 0\end{matrix}\right.\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m>-6\\\left[{}\begin{matrix}m>-\dfrac{11}{2}\\m< -6\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\)\(\left\{{}\begin{matrix}m\ne1\\m>-\dfrac{11}{2}\end{matrix}\right.\)
Để hệ có nghiệm duy nhất thì \(\dfrac{2m}{8}\ne\dfrac{1}{m}\)
=>\(m^2\ne4\)
=>\(m\notin\left\{2;-2\right\}\)
\(\left\{{}\begin{matrix}2mx+y=2\\8x+my=m+2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2m^2\cdot x+my=2m\\8x+my=m+2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x\left(2m^2-8\right)=m-2\\y=2-2mx\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{m-2}{2m^2-8}=\dfrac{1}{2\left(m+2\right)}\\y=2-\dfrac{2m}{2\left(m+2\right)}=2-\dfrac{m}{m+2}=\dfrac{2m+4-m}{m+2}=\dfrac{m+4}{m+2}\end{matrix}\right.\)
4x+3y=7
=>\(\dfrac{4}{2\left(m+2\right)}+\dfrac{3\left(m+4\right)}{m+2}=7\)
=>\(\dfrac{2+3\left(m+4\right)}{m+2}=7\)
=>7(m+2)=2+3m+12
=>7m+14=3m+14
=>4m=0
=>m=0(nhận)