1- Tìm các chữ số a,b sao cho
a) a-b= 4 & 87ab chia hết cho 9
b)a-b= 6 & 4a7 + 1b5 chia hết cho 9
2- Tổng ( hiệu ) sau có chia hết cho 3 ko, chia hết cho 9 ko?
a. 10^12 - 1
b. 10^10 + 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để: \(\overline{a785b}\) chia hết cho 5 thì: \(b\in\left\{0;5\right\}\)
TH1: số đó có dạng: \(\overline{a7850}\) mà số này chia 9 dư 2
Nên: \(\overline{a7848}\) chia hết cho 9 \(\Rightarrow a=36-7-8-4-8=9\)
TH2: số đó có dạng: \(\overline{a7855}\) mà số này chia 9 dư 2
Nên: \(\overline{a7853}\) chia hết cho 9 \(\Rightarrow a=27-7-8-5-3=4\)
Vậy các số (a;b) thỏa mãn là: \(\left(9;0\right);\left(4;5\right)\)
b) Để: \(A=\overline{a785b}\) là số chẵn thì \(b\in\left\{0;2;4;6;8\right\}\)
TH1: số đó có dạng \(\overline{a7850}\) mà số này chia hết cho 5 không dư 3 (loại TH1)
TH2: số đó có dạng \(\overline{a7852}\) mà số này chia cho 5 dư 3 \(\Rightarrow\overline{a7849}\) \(⋮̸\)5 (loại TH2)
TH3: số đó có dạng \(\overline{a7854}\) mà số này chia cho 5 dư 3 \(\Rightarrow\overline{a7851}\) \(⋮̸\)5 (loại TH3)
TH4: số đó có dạng \(\overline{a7856}\) mà số này chia cho 5 dư 3 \(\Rightarrow\overline{a7853}\) \(⋮̸\)5 (loại TH4)
TH5: số đó có dạng \(\overline{a7858}\) mà số này chia cho 5 dư 3 \(\Rightarrow\overline{a7855}\) ⋮ 5 (đúng)
Mà: số này chia hết cho 9 \(\Rightarrow a=36-7-8-5-8=8\)
Vậy cặp số (a;b) thỏa mãn là (8;8)
a: =-1/3+1/3=0
b: =411(−27−47−17)=411⋅(−1)=−411=411(−27−47−17)=411⋅(−1)=−411
c: =10+59−3−57−4−59=3−57=167=10+59−3−57−4−59=3−57=167
d: =13+74−74+45=13+45=5+1215=1715
a: =>ab-3b-a=5
=>a(b-1)-3b+3=8
=>(b-1)(a-3)=8
=>\(\left(a-3;b-1\right)\in\left\{\left(1;8\right);\left(8;1\right);\left(-1;-8\right);\left(-8;-1\right);\left(2;4\right);\left(4;2\right);\left(-2;-4\right);\left(-4;-2\right)\right\}\)
=>\(\left(a,b\right)\in\left\{\left(4;9\right);\left(11;2\right);\left(2;-7\right);\left(-5;0\right);\left(5;5\right);\left(7;3\right);\left(1;-3\right);\left(-1;-1\right)\right\}\)
b: =>ab-3b-3=5
=>b(a-3)=8
=>\(\left(a-3;b\right)\in\left\{\left(1;8\right);\left(8;1\right);\left(-1;-8\right);\left(-8;-1\right);\left(2;4\right);\left(4;2\right);\left(-2;-4\right);\left(-4;-2\right)\right\}\)
=>\(\left(a,b\right)\in\left\{\left(4;8\right);\left(11;1\right);\left(2;-8\right);\left(-5;-1\right);\left(5;4\right);\left(7;2\right);\left(1;-4\right);\left(-1;-2\right)\right\}\)
a: =>a(x+1)(x+2)+bx(x+2)+cx(x+1)=1
=>a(x^2+3x+2)+bx^2+2bx+cx^2+cx=1
=>ax^2+3ax+2a+bx^2+2bx+cx^2+cx=1
=>x^2(a+b+c)+x(3a+2b+c)+2a=1
=>a+b+c=0 và 3a+2b+c=0 và a=1/2
=>a=1/2; b+c=-1/2; 2b+c=-3/2
=>b=-1; c=1/2; a=1/2
b: =>1=(ax+b)(x-1)+c(x^2+1)
=>x^2*a-a*x+bx-b+cx^2+c=1
=>x^2(a+c)+x(-a+b)-b+c=1
=>a+c=0 và -a+b=0 và -b+c=1
=>a+b=-1 và -a+b=0 và a+c=0
=>a=-1/2; b=-1/2; c=-a=1/2
a) A = 2014 + 20142 + 20143 + 20144 + ..... + 20142014
A = ( 2014 + 20142 ) + ( 20143 + 20144 ) + ..... + ( 20142013 + 20142014 )
A = 2014( 1 + 2014 ) + 20143( 1 + 2014 ) + ....... 20142013( 1 + 2014 )
A = 2014 . 2015 + 20143 . 2015 + ....... + 20142013 . 2015
A = ( 2014 + 20143 + ...... 20142013 ) . 2015 chia hết cho 2015
b) Ta có 6 chia hết cho n - 1
=> n-1 thuộc Ư(6) = { 1 ; 2 ; 3 ; 6 }
Nếu n - 1 = 1 => n = 2 (tm)
Nếu n - 1 = 2 => n = 3 (tm)
Nếu n - 1 = 3 => n = 4 (tm)
Nếu n - 1 = 6 => n = 7 (tm)
Vậy n thuộc { 2 ; 3 ; 4 ; 7 }
Mk ko chắc là đúng
hok tốt
a,Ta có : \(A^,=T_{\overrightarrow{v}}\left(A\right)\)
\(\Rightarrow\overrightarrow{AA^,}=\overrightarrow{v}\)
\(\Rightarrow\left\{{}\begin{matrix}x-1=2\\y+4=-1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=3\\y=-5\end{matrix}\right.\)
\(\Rightarrow A^,\left(3;-5\right)\)
Vậy ...