Dựa vào các tính chất của dãy tỉ số bằng nhau , tìm a,b,c trong dãy tỉ số sau :
3X = 2Y ; 7Y = 6Z và X + 3Y - 2Z=12
Giải thích cách giải ( nếu được ) và giải bài này ( có thể nâng lên hạ xuống số )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Ta\)\(có\): 3X=2Y 7Y=6Z
\(\Leftrightarrow\frac{x}{2}=\frac{y}{3};\frac{y}{6}=\frac{z}{7}\)
\(+\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{1}{6}.\frac{x}{2}=\frac{1}{6}.\frac{y}{3}\Rightarrow\frac{x}{12}=\frac{y}{18}\)(1)
\(+\frac{y}{6}=\frac{z}{7}\Rightarrow\frac{1}{3}.\frac{y}{6}=\frac{1}{3}.\frac{z}{7}\Rightarrow\frac{y}{18}=\frac{z}{21}\)(2)
Từ (1),(2)=>\(\frac{x}{12}=\frac{y}{18}=\frac{z}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{12}=\frac{y}{18}=\frac{z}{21}=\frac{x+3y-2z}{12+3.18-2.21}=\frac{12}{12}=1\)
=>x=12.1=12
y=18.1=18
z=21.1=21
Vậy x=12;y=18;z=21
hộ mk cái
thank you
chúc các bạn mik hok tốt
Theo tính chất dãy tỉ số bằng nhau
Ta có : a phần 2 =b phần 3 =a2-b2+2c2 phần 4-9+4=108 phần 9 =12
suy ra a=12x2=24
suy ra b=12x3=36
suy ra c =12x4=48
Vậy a=24
b=36
c=48
Gọi hai số cần tìm là x,y mà tỉ số của x,y là \(\frac{4}{5}\)
\(\Rightarrow\frac{x}{y}=\frac{4}{5}\) hoặc \(\frac{y}{x}=\frac{4}{5}\)
Với \(\frac{x}{y}=\frac{4}{5}\) ta có:
\(\frac{x+1,2}{y}=\frac{11}{15}\Rightarrow\frac{x}{y}+\frac{1,2}{y}=\frac{11}{15}\Rightarrow\frac{1,2}{y}=\frac{11}{15}-\frac{4}{5}=-\frac{1}{15}\)
=> \(\begin{cases}y=-18\\x=-14,4\end{cases}\)
Với \(\frac{y}{x}=\frac{4}{5}\) ta có:
\(\frac{y}{x+1,2}=\frac{11}{15}\Rightarrow\frac{x+1,2}{y}=\frac{15}{11}\Rightarrow\frac{x}{y}+\frac{1,2}{y}=\frac{15}{11}\Rightarrow\frac{1,2}{y}=\frac{5}{44}\)
=> \(\begin{cases}y=10,56\\x=13,2\end{cases}\)
Vậy các cặp (x,y) thỏa mãn là: (13,2;10,56) ; (-14,4;-18)
\(2x=3y=5z\Leftrightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+2y+z}{15+2.10+6}=\frac{41}{41}=1\)
\(\Leftrightarrow\hept{\begin{cases}x=1.15=15\\y=1.10=10\\z=1.6=6\end{cases}}\)
\(\frac{a}{3}=\frac{3}{b}\Rightarrow ab=9\)
\(\frac{a}{3}=\frac{a}{b}\Rightarrow ab=3a\)
=> 3a =9 => a =3
a=3 => 3.b=9 => b=3
Vậy a =b =3