K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2019

* Số phần tử tập hợp E là : \(60-2+1=59\) (phần tử).

​* Cách làm :

- Bài toán tổng quát (áp dụng với các số tự nhiên liên tiếp): 

+ Tìm số phần tử của tập hợp : \(\text{A}=\left\{\text{x, x+1, x+2,..., x+n}\right\}\)

+ Giải : Số phần tử của tập hợp là : \(\left(x+n\right)-x+1\).

- Nếu với tập hợp có khoảng cách đều nhau (dãy số cách đều) là : \(\frac{\text{số cuối}-\text{số đầu}}{\text{khoảng cách}}+1\).

AH
Akai Haruma
Giáo viên
12 tháng 9 2021

Lời giải:

$a^2+b^2+c^2+d^2+e^2=a(b+c+d+e)$

$\Leftrightarrow 4a^2+4b^2+4c^2+4d^2+4e^2-4a(b+c+d+e)=0$

$\Leftrightarrow (a^2+4b^2-4ab)+(a^2-4c^2-4ac)+(a^2+4d^2-4ad)+(a^2+4e^2-4ae)=0$

$\Leftrightarrow (a-2b)^2+(a-2c)^2+(a-2d)^2+(a-2e)^2=0$

Ta thấy: $(a-2b)^2,(a-2c)^2,(a-2d)^2,(a-2e)^2\geq 0$ với mọi $a,b,c,d,e$ thực

Do đó để tổng của chúng bằng $0$ thì:

$(a-2b)^2=(a-2c)^2=(a-2d)^2=(a-2e)^2=0$

$\Leftrightarrow 2b=2c=2d=2e=a$

$\Rightarrow b=c=d=e$

11 tháng 9 2021

\(\left(\dfrac{a}{2}-b\right)^2\ge0\Leftrightarrow\dfrac{a^2}{4}-ab+b^2\ge0\Leftrightarrow\dfrac{a^2}{4}+b^2\ge ab\)

CMTT ta được: \(\left\{{}\begin{matrix}\dfrac{a^2}{4}+c^2\ge ac\\\dfrac{a^2}{4}+d^2\ge ad\\\dfrac{a^2}{4}+e^2\ge ae\end{matrix}\right.\)

\(\Rightarrow4.\dfrac{a^2}{4}+b^2+c^2+d^2+e^2\ge ab+ac+ad+ae\)

\(\Rightarrow a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)

\(ĐTXR\Leftrightarrow\dfrac{a}{2}=b=c=d=e\)

NV
5 tháng 3 2023

\(\int e^2dx=e^2.x+C\)

5 tháng 3 2023

C. f(x) = \(e^2\)x+C

26 tháng 3 2023

5A

1B

3C

4D

\(#TyHM\)

8 tháng 4 2021

a, \(E=\left(\frac{x^2+4}{x^2-4}+\frac{6}{6-3x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)ĐK : \(x\ne\pm2\)

\(=\left(\frac{x^2+4}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right):\left(\frac{x^2-4+10-x^2}{x+2}\right)\)

\(=\left(\frac{x^2+4-2\left(x+2\right)+x-2}{\left(x-2\right)\left(x+2\right)}\right):\left(\frac{6}{x+2}\right)\)

\(=\frac{x^2+4-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}.\frac{x+2}{6}=\frac{x^2-x-2}{6\left(x-2\right)}=\frac{x+1}{6}\)

b, Ta có : \(\left|2x-3\right|=1\Leftrightarrow\orbr{\begin{cases}2x-3=1\\2x-3=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\left(ktmđk\right)\\x=1\end{cases}}}\)

Thay x = 1 vào biểu thức E ta được : \(\frac{1+1}{6}=\frac{2}{6}=\frac{1}{3}\)

Vậy với x = 1 thì E = 1/3 

c, Ta có : \(E< 0\)hay \(\frac{x+1}{6}< 0\Rightarrow x+1>0\)( do 6 > 0 )

\(\Leftrightarrow x>-1\)

Với với x > -1 thì E < 0 

d, Ta có E = 3 - x hay \(\frac{x+1}{6}=3-x\Rightarrow x+1=18-6x\Leftrightarrow7x=17\Leftrightarrow x=\frac{17}{7}\)

7 tháng 10 2021

Áp dụng t/c dtsbn:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x^2}{4}=\dfrac{2y^2}{18}=\dfrac{z^2}{25}=\dfrac{x^2-2y^2+z^2}{4-18+25}=\dfrac{44}{11}=4\\ \Leftrightarrow\left\{{}\begin{matrix}x=8\\y=12\\z=20\end{matrix}\right.\)

19 tháng 5 2021

Xét  a^2+b^2+c^2+d^2+e^2-(a+b+c+d+e)

   \(=\) a^2+b^2+c^2+d^2+e^2 -a-b-c-d-e

    \(=\)a(a-1)+b(b-1)+c(c-1)+d(d-1)

Ta có: a, a-1 là 2 số liên tiếp nên tích chúng chi hết cho 2

tương tự b,c,d,e cũng vậy

\(\Rightarrow\) \(\left\{{}\begin{matrix}a\left(a-1\right)⋮2\\b\left(b-1\right)⋮2\\c\left(c-1\right)⋮2\\d\left(d-1\right)⋮2\end{matrix}\right.\Rightarrow\)a(a-1)+b(b-1)+c(c-1)+d(d-1)   \(⋮\)2

\(\Rightarrow\)a^2+b^2+c^2+d^2+e^2-(a+b+c+d+e) \(⋮\)2

mà a^2+b^2+c^2+d^2+e^2 \(⋮\)2

\(\Rightarrow\)a+b+c+d+e \(⋮\)2

mà a,b,c,d,e nguyên dương

\(\Rightarrow\)a+b+c+d+e>2

\(\Rightarrow\)a+b+c+d+e là hợp số

Lưu ý: muốn chứng minh là hợp số phải chứng minh nó chia hết cho 1 số(không phải số nguyên tố)

còn nếu nó chia hết cho 1 số nguyên tố thì phải lớn hơn số nguyên tố đó

nên sau khi c/m a+b+c+d+e \(⋮\)2 , chúng ta phải c/m a+b+c+d+e>2. chứ lở nó bằng hai thì ko phải hợp số

25 tháng 3 2022

Chọn đáp án đúng nhất . Nếu (x-1/2)2 = 9/4 . Thì giá trị của x là :

A.x=2          B.x e (2,0)        C.x e (2,-1)        D.x e (-1, -2)