K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2018

sử dụng tính chất dãy tỉ số bằng nhau

18 tháng 10 2018

\(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}=\frac{x}{21}=\frac{y}{14}\)

\(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}=\frac{y}{14}=\frac{z}{10}\)

\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{x-y+z}{21-14+10}=\frac{34}{17}=2\)

\(\Rightarrow\frac{x}{21}=2\Rightarrow x=42\)

\(\frac{y}{14}=2\Rightarrow y=28\)

\(\frac{z}{10}=2\Rightarrow z=20\)

Vậy \(x=42;y=28;z=20\)

Tham khảo nhé~

1: x=3y=2z

=>x/6=y/2=z/3

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{6}=\dfrac{y}{2}=\dfrac{z}{3}=\dfrac{2x-3y+4z}{2\cdot6-3\cdot2+4\cdot3}=\dfrac{48}{18}=\dfrac{8}{3}\)

=>x=48/3=16; y=16/3; z=8

2: 2x=3y=4z

=>x/6=y/4=z/3

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{3}=\dfrac{2x-3y+4z}{2\cdot6-3\cdot4+4\cdot3}=\dfrac{48}{12}=4\)

=>x=24; y=16; z=12

21 tháng 7 2021

\(\left(2x+3y\right)\left(2x-3y\right)-\left(2x-1\right)^2+\left(3y-1\right)^2\)

\(=4x^2-9y^2-4x^2+4x-1+9y^2-6y+1=4x-6y\)

Thay x = 1 ; y = -1 ta được : 

\(4+6=10\)

20 tháng 11 2021

2x+\(\dfrac{1}{5}\) = 3y - \(\dfrac{2}{7}\) = 2x+3y -\(\dfrac{1}{6x}\) và 2x + 3y - z =50

có phải đề như này ko

20 tháng 11 2021

bn viết rõ đề đi ạ:)

\(x=3y=2z\)

\(\Rightarrow\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\)

\(\Rightarrow\frac{2x}{2}=\frac{3y}{6}=\frac{4z}{12}=\frac{2x-3y+4z}{2-6+12}=\frac{48}{8}=6\)

Rồi thế vào là ra thôi :

 \(\frac{2x}{2}=6\Rightarrow x=..........\)

Rồi tương tự thôi

9 tháng 8 2016

6)

\(x=3y=2z\)

\(\Rightarrow\frac{x}{6}=\frac{y}{2}=\frac{z}{3}\)

\(\Rightarrow\frac{2x}{12}=\frac{3y}{6}=\frac{4z}{12}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có

\(\frac{2x}{12}=\frac{3y}{6}=\frac{4z}{12}=\frac{2x-3y+4z}{12-6+12}=\frac{48}{18}=\frac{24}{9}\)

\(\Rightarrow\begin{cases}x=16\\y=\frac{16}{3}\\z=8\end{cases}\)

9 tháng 8 2016

7)

\(2x=3y=-2z\)

\(\Rightarrow\frac{2x}{1}=\frac{3y}{1}=\frac{-4z}{2}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có

\(\frac{2x}{1}=\frac{3y}{1}=\frac{-4z}{2}=\frac{2x-3y-\left(-4z\right)}{1-1-2}=\frac{48}{-2}=-24\)

\(\Rightarrow\begin{cases}x=-12\\y=-8\\z=12\end{cases}\)

a: 2x-3y=1 và -x+4y=7

=>2x-3y=1 và -2x+8y=14

=>5y=15 và 2x-3y=1

=>y=3 và 2x=1+3y=10

=>x=5 và y=3

b; x+3y=7 và 2x-3y=8

=>3x=15 và 2x-3y=8

=>x=5 và 3y=2x-8=2*5-8=10-8=2

=>x=5 và y=2/3

19 tháng 12 2021

\(\Rightarrow\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}=\dfrac{2x+3y-5z}{10+12-15}=\dfrac{2x-3y+5z}{10-12+15}\\ \Rightarrow A=\dfrac{10+12-15}{10-12+15}=\dfrac{7}{13}\)

25 tháng 8 2020

a, \(\left(3+2x\right)^2=9+12x+4x^2\)

b, \(\left(3x-2y\right)^2=9x^2-12xy-4y^2\)

c, \(\left(2x-3y\right)\left(2x+3y\right)=4x^2+6xy-6xy-9y^2=4x^2-9y^2\)

d, \(\left(2x+3y\right)^3=8x^3+36x^2y+54xy^2+27y^3\)

25 tháng 8 2020

( 3 + 2x )2 = 32 + 2.3.2x + ( 2x )2 = 4x2 + 12x + 9

( 3x - 2y )2 = ( 3x )2 - 2.3x.2y + ( 2y )2 = 9x2 - 12xy + 4y2

( 2x - 3y )( 2x + 3y ) = ( 2x )2 - ( 3y )2 = 4x2 - 9y2

( 2x + 3y )3 = ( 2x )3 + 3( 2x )2.3y + 3.2x.( 3y )2 + ( 3y )3 = 8x3 + 36x2y + 54xy2 + 27y3