K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) Với \(x = 1\) thì \(y = {\log _2}1 = 0\)

Với \(x = 2\) thì \(y = {\log _2}2 = 1\)

Với \(x = 4\) thì \(y = {\log _2}4 = 2\)

b) Biểu thức \(y = {\log _2}x\) có nghĩa khi x > 0.

HQ
Hà Quang Minh
Giáo viên
26 tháng 8 2023

\(x=log_aN\\ \Leftrightarrow a^x=N\\ \Leftrightarrow loga^x=logN\\ \Leftrightarrow xloga=logN\\ \Leftrightarrow x=\dfrac{logN}{loga}\)

Vậy \(log_aN=\dfrac{logN}{loga}\)

Cho hàm số lôgarit \(y = {\log _2}x\)a)     Tìm giá trị y tương ứng với giá trị của x trong bảng sau:b,     Trong mặt phẳng tọa độ Oxy, biểu diễn các điểm (x; y) trong bảng giá trị ở câu a.Bằng cách làm tương tự, lấy nhiều điểm \(\left( {x;{{\log }_2}x} \right)\) với \(x \in (0; + \infty )\) và nối lại ta được đồ thị hàm số \(y = {\log _2}x\) như hình bên.c,     Cho biết tọa độ giao điểm của đồ thị hàm số \(y...
Đọc tiếp

Cho hàm số lôgarit \(y = {\log _2}x\)

a)     Tìm giá trị y tương ứng với giá trị của x trong bảng sau:

b,     Trong mặt phẳng tọa độ Oxy, biểu diễn các điểm (x; y) trong bảng giá trị ở câu a.

Bằng cách làm tương tự, lấy nhiều điểm \(\left( {x;{{\log }_2}x} \right)\) với \(x \in (0; + \infty )\) và nối lại ta được đồ thị hàm số \(y = {\log _2}x\) như hình bên.

c,     Cho biết tọa độ giao điểm của đồ thị hàm số \(y = {\log _2}x\) với trục hoành và vị trí của đồ thị hàm số đó với trục tung.

d,   Quan sát đồ thị hàm số \(y = {\log _2}x\), nêu nhận xét về:

\(\mathop {\mathop {\lim }\limits_{x \to {0^ + }} ({{\log }_2}x)}\limits_{} \,;\mathop {\,\,\mathop {\lim }\limits_{x \to  + \infty } ({{\log }_2}x)}\limits_{} \)Sự biến thiên của hàm số \(y = {\log _2}x\) và lập bảng biến thiên của hàm số đó
1

a: 

x0,51248
\(y\)-10123

b:

c: Tọa độ giao điểm của hàm số với trục hoành là B(2;0)

Đồ thị hàm số này ko cắt trục tung

d: 

\(\lim\limits_{x\rightarrow0^+}log_2x=0\)

\(\lim\limits_{x\rightarrow+\infty}\left(log_2x\right)=+\infty\)

=>Hàm số này đồng biến trên TXĐ của nó là D=[0;+vô cực)

HQ
Hà Quang Minh
Giáo viên
25 tháng 8 2023

a: Khi x=-1 thì \(y=2^{-1}=\dfrac{1}{2}\)

Khi x=0 thì \(y=2^0=1\)

Khi x=1 thì \(y=2^1=2\)

Với mỗi giá trị của x thì chỉ có 1 giá trị 2x tương ứng

b: Biểu thức y=2x có nghĩa với mọi x

HQ
Hà Quang Minh
Giáo viên
24 tháng 8 2023

\(a,A=log_23\cdot log_34\cdot log_45\cdot log_56\cdot log_67\cdot log_78\\ =log_28\\ =log_22^3\\ =3\\ b,B=log_22\cdot log_24...log_22^n\\ =log_22\cdot log_22^2...log_22^n\\ =1\cdot2\cdot...\cdot n\\ =n!\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 8 2023

Khoảng giá trị của x mà đồ thị hàm số \(y=log_2x\) nằm phía trên đường thẳng y = 2 là \(\left(4;+\infty\right)\)

\(\Rightarrow\) Tập nghiệm của bất phương trình \(log_2x>2\) là \(\left(4;+\infty\right)\)

18 tháng 8 2023

a) \(log_29\cdot log_34=4\)

b) \(log_{25}\cdot\dfrac{1}{\sqrt{5}}=-\dfrac{1}{4}\)

c) \(log_23\cdot log_9\sqrt{5}\cdot log_54=\dfrac{1}{2}\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 8 2023

Do 2 > 1 ⇒ hàm số y = log2x đồng biến trên D = \(\left(0;+\infty\right)\)

\(log_2x>1\\ \Rightarrow x>2\)

a:

i: 

x1/2124
y-1012

 

ii:

Hàm số liên tục và đồng biến trên \(\left(0;+\infty\right)\)

\(\lim\limits_{x\rightarrow+\infty}log_2x=+\infty;\lim\limits_{x\rightarrow0^+}log_2x=-\infty\)

Tập giá trị: R

b:

x1/2124
y10-1-2

loading...

Hàm số liên tục và nghịch biến trên \(\left(0;+\infty\right)\)

\(\lim\limits_{x\rightarrow+\infty}log_{\dfrac{1}{2}}x=-\infty;\lim\limits_{x\rightarrow0^+}log_{\dfrac{1}{2}}x=+\infty\)

Tập giá trị: R