Tìm số nghiệm thuộc đoạn 2 π ; 4 π của phương trình sin 2 x cos x + 1 = 0.
A. 5
B. 6
C. 3
D. 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Ta có c o s x + sin 2 x = 0 ⇔ cos x + 2 sin x cos x = 0 ⇔ [ cos x = 0 sin x = - 1 2 ⇔ [ x = π 2 + k π x = - π 6 + k 2 π x = 7 π 6 + k 2 π
Mà x ∈ - π ; π ⇒ x ∈ - π 2 ; π 2 ; - π 6 ; - 5 π 6 .
Vậy chỉ có 1 nghiệm của phương trình thuộc [0; .
Đáp án là A.
Ta có sin x = cos x ⇔ sin x = sin π 2 − x
⇔ x = π 2 − x + k 2 π x = π − π 2 − x + k 2 π
⇔ x = π 4 + k π , k ∈ ℤ
Do x ∈ 0 ; π nên k = 0
Vậy phương trình chỉ có một nghiệm duy nhất
ĐÁP ÁN A
Đáp án B
PT sin x + π 4 = 1 ⇔ x + π 4 = π 2 + k 2 π ⇔ x = π 4 + k 2 π
Ta thấy π 4 + k 2 π ∈ π ; 5 π ⇔ k ∈ 1 ; 2 ⇒ P T có hai nghiệm thuộc π ; 5 π
Đáp án D
P T ⇔ cos x + 1 ≠ 0 sin 2 x = 0 ⇔ cos x ≠ − 1 2 x = k π ⇔ x ≠ π + k 2 π x = k π 2 ⇒ x = k 2 π x = π 2 + k π k ∈ ℤ .
x ∈ 2 π ; 4 π ⇒ 2 π ≤ k 2 π ≤ 4 π 2 π ≤ π 2 + k π ≤ 4 π ⇔ 1 ≤ k ≤ 2 3 2 ≤ k ≤ 7 2
Suy ra PT có 4 nghiệm thuộc đoạn 2 π ; 4 π .