Viết phương trình đường thẳng d biết d đi qua điểm N( 1; 4) và có hệ số góc là số nguyên dương nhỏ nhất.
A. x+ y-1= 0
B. x-y+3= 0
C. x+y- 2= 0
D. x+ y- 4= 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5:
Gọi (d): y=ax+b là phương trình cần tìm
Theo đề, ta có hệ:
3a+b=-1 và 2a+b=3
=>a=-4 và b=11
=>y=-4x+11
4:
vecto BC=(1;-1)
=>AH có VTPT là (1;-1)
Phương trình AH là:
1(x-1)+(-1)(y+3)=0
=>x-1-y-3=0
=>x-y-4=0
Đường thẳng d đi qua gốc tọa độ nên d có phương trình dạng: y = ax
( d ) đi qua điểm N nên: 2 = a . 3 => a = \(\frac{2}{3}\)
Vậy phương trình đường thẳng d là: y = \(\frac{2}{3}\) x
Gọi phương trình đường thẳng d cần tìm là y = a x + b ( a ≠ 0 )
Vì d // d’ nên a = − 2 b ≠ − 5 ⇒ d: y = − 2 x + b
Thay tọa độ điểm M vào phương trình đường thẳng d ta được:
− 2 . ( − 1 ) + b = 4 ⇒ b = 2 (thỏa mãn)
Vậy phương trình đường thẳng d: y = − 2 x + 2
Đáp án cần chọn là: C
Gọi phương trình đường thẳng d cần tìm là y = a x + b ( a ≠ 0 )
Vì d // d’ nên a = 3 b ≠ 1 ⇒ d: y = 3 x + b
Thay tọa độ điểm M vào phương trình đường thẳng d ta được:
3 . ( − 2 ) + b = 2 ⇒ b = 8 (thỏa mãn)
Vậy phương trình đường thẳng d: y = 3 x + 8
Đáp án cần chọn là: B
Lời giải:Điểm M,N có vẻ không có vai trò gì trong bài toán.
Ta có: $\overrightarrow{u_{\Delta}}=(2,-1)$
$\overrightarrow{u_{d'}}=(a,b)$
\(\cos (\Delta, d')=\frac{\overrightarrow{u_{\Delta}}.\overrightarrow{u_d'}}{|\overrightarrow{u_{\Delta}}||\overrightarrow{u_d'}|}=\frac{2a-b}{\sqrt{a^2+b^2}.\sqrt{5}}=\cos 45^0=\frac{\sqrt{2}}{2}\)
$\Rightarrow a=3b$ hoặc $a=-\frac{b}{3}$
PTĐT $d'$ là:
$-x+3y=0$ hoặc $3x+y=0$
Tại sao từ cos 450=\(\dfrac{\sqrt{2}}{2}\) thì lại => a=3b hoặc a=\(\dfrac{-b}{3}\) ạ ?
Gọi phương trình đường thẳng d cần tìm là y = a x + b ( a ≠ 0 )
Thay tọa độ điểm A vào phương trình đường thẳng d ta được a + b = 2 ⇒ b = 2 – a
Thay tọa độ điểm B vào phương trình đường thẳng d ta được − 2 a + b = 0 ⇒ b = 2 a
Suy ra 2 a = 2 – a ⇔ a = 2 3 ⇒ b = 2. 2 3 = 4 3 ⇒ y = 2 3 x + 4 3 ( T M )
Vậy d: y = 2 3 x + 4 3
Đáp án cần chọn là: D
Gọi phương trình đường thẳng d cần tìm là y = a x + b ( a ≠ 0 )
Thay tọa độ điểm A vào phương trình đường thẳng d ta được 3 a + b = 3 ⇒ b = 3 – 3 a
Thay tọa độ điểm B vào phương trình đường thẳng d ta được − 1 . a + b = 4 ⇒ b = 4 + a
Suy ra 3 − 3 a = 4 + a ⇔ 4 a = − 1 ⇔ a = − 1 4 ⇒ b = 4 + a = 4 + 1 4
= 15 4 ⇒ y = − 1 4 x + 15 4
Vậy d: y = − 1 4 x + 15 4
Đáp án cần chọn là: B
Gọi phương trình đường thẳng d: y = a x + b
Vì d có hệ số góc bằng 2 nên a = 2 ⇔ y = 2 x + b
Thay tọa độ điểm A vào phương trình đường thẳng d ta có 2 . 2 + b = 1 ⇔ b = − 3
Nên d: y = 2 x − 3
Đáp án cần chọn là: B
Gọi đường thẳng đi qua A là d'.
a) Ta có: \(d'\perp d.\)
\(\Rightarrow\) VTPT của d là VTCP của d'.
Mà VTPT của d là: \(\overrightarrow{n_d}=\left(3;-4\right).\)
\(\Rightarrow\overrightarrow{u_{d'}}=\left(3;-4\right).\Rightarrow\overrightarrow{n_{d'}}=\left(4;3\right).\)
\(\Rightarrow\) Phương trình đường thẳng d' là:
\(4\left(x-2\right)+3\left(y+1\right)=0.\\ \Leftrightarrow4x+3y-5=0.\)
b) Ta có: \(d'//d.\)
\(\Rightarrow\) VTPT của d là VTPT của d'.
Mà VTPT của d là: \(\overrightarrow{n_d}=\left(3;-4\right).\)
\(\Rightarrow\) \(\overrightarrow{n_{d'}}=\left(3;-4\right).\)
\(\Rightarrow\) Phương trình đường thẳng d' là:
\(3\left(x-2\right)-4\left(y+1\right)=0.\\ \Leftrightarrow3x-4y-10=0.\)
Đáp án B
Số nguyên dương nhỏ nhất là 1 nên hệ số góc của đường thẳng (d) là k= 1
Phương trình đường thẳng (d) là
y= 1(x - 1) +4
hay x- y + 3= 0.