Bài tập 1: Viết PTTS của d
a, Đi qua M(5; 4 ; 1) có vTCP \(\overrightarrow{a}\)(2; -3 ; 1).
b, Đi qua A(2 ; -1; 3) vuông góc \(\left(\alpha\right)\): x + y - z + 5 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Phương trình:
\(2\left(x-3\right)+1\left(y+4\right)=0\Leftrightarrow2x+y-2=0\)
2.
Phương trình tham số: \(\left\{{}\begin{matrix}x=3-3t\\y=-4+3t\end{matrix}\right.\)
3.
\(\overrightarrow{NM}=\left(4;2\right)=2\left(2;1\right)\)
\(\Rightarrow\) Đường thẳng MN nhận (2;1) là 1 vtcp và (1;-2) là 1 vtpt
Phương trình tổng quát (chọn điểm M để viết):
\(1\left(x-3\right)-2\left(y-4\right)=0\Leftrightarrow x-2y+5=0\)
Phương trình tham số: \(\left\{{}\begin{matrix}x=3+2t\\y=4+t\end{matrix}\right.\)
Lời giải:
(d) có VTCP là $(-1,1)$. $(\Delta)$ song song với $(d)$ nên cũng có VTCP $(-1,1)$
Mà $(\Delta)$ đi qua $M(-3,5)$ nên có PTTS là:
\(\left\{\begin{matrix} x=-3-t\\ y=5+t\end{matrix}\right.\)
a,Gọi đường thẳng cần tìm là d1.
Vì d trùng với Ox nên d1 song song với Ox. Suy ra d1 có VTCP (1;0) ; VTPT(-1;0)
Ta có; PTTS \(\left\{{}\begin{matrix}x=-1+1t=-1+t\\y=2+0t=2\end{matrix}\right.\)
PTCT(không có)
PTTQ: -1(x+1)+ 0(y-2) =0
⇔ -1x-1=0 ⇔ x+1=0
Câu b tương tự :)
d song song trục Ox nên d nhận \(\left(1;0\right)\) là 1 vtcp
Phương trình d: \(\left\{{}\begin{matrix}x=4+t\\y=-7\end{matrix}\right.\)
a. Phương trình: \(\left\{{}\begin{matrix}x=5+2t\\y=4-3t\\z=1+t\end{matrix}\right.\)
b. Do d vuông góc \(\left(\alpha\right)\) nên nhận \(\left(1;1;-1\right)\) là 1 vtcp
Phương trình: \(\left\{{}\begin{matrix}x=2+t\\y=-1+t\\z=3-t\end{matrix}\right.\)