cho tam giác vs 3 cạnh có pt: x+2y-13= 0; 2x+y-13= 0 và x-2y+6 = 0
c/m tam giác này vuông và tính bán kính đường tròn ngoại tiếp
em cám ơn ạk
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm ra 3 đỉnh tam giác và độ dài 3 cạnh tam giác sau đó dùng pytago đảo
Tọa độ A là nghiệm: \(\left\{{}\begin{matrix}x+2y-5=0\\4x+13y-10=0\end{matrix}\right.\) \(\Rightarrow A\left(9;-2\right)\)
\(\Rightarrow\overrightarrow{AC}=\left(-5;5\right)=5\left(-1;1\right)\)
Phương trình AC: \(1\left(x-4\right)+1\left(y-3\right)=0\Leftrightarrow x+y-7=0\)
Phương trình đường thẳng qua C vuông góc AD có dạng:
\(2\left(x-4\right)-1\left(y-3\right)=0\Leftrightarrow2x-y-5=0\)
Gọi E là hình chiếu của C lên AD \(\Rightarrow\left\{{}\begin{matrix}2x-y-5=0\\x+2y-5=0\end{matrix}\right.\) \(\Rightarrow E\left(3;1\right)\)
Gọi F là điểm đối xứng C qua AD \(\Rightarrow F\) thuộc AB đồng thời E là trung điểm CF \(\Rightarrow F\left(2;-1\right)\)
\(\overrightarrow{AF}=\left(-7;1\right)\Rightarrow\) pt AB: \(1\left(x-2\right)+7\left(y+1\right)=0\Leftrightarrow x+7y+5=0\)
Tọa độ B có dạng: \(B\left(-7b-5;b\right)\) \(\Rightarrow M\left(\dfrac{-7b-1}{2};\dfrac{b+3}{2}\right)\)
M thuộc AM nên: \(4\left(\dfrac{-7b-1}{2}\right)+13\left(\dfrac{b+3}{2}\right)-10=0\Rightarrow b=1\Rightarrow B\left(-12;1\right)\)
\(\Rightarrow\overrightarrow{BC}\Rightarrow\) phương trình BC
Tính độ dài 3 cạnh, tính diện tích theo công thức Hê-rông
Bạn tự hoàn thành phần còn lại nhé
a: Khi m=-3 thì (1): x^2-(-x)-2=0
=>x^2+x-2=0
=>x=-2 hoặc x=1
b: Δ=(m+2)^2-4(m+1)
=m^2+4m+4-4m-4=m^2>=0
=>Phương trình luôn có 2 nghiệm
Đường thẳng BC đi qua C và vuông góc AH nên nhận (2;-1) là 1 vtpt
Phương trình BC:
\(2\left(x-0\right)-1\left(y+2\right)=0\Leftrightarrow2x-y-2=0\)
Tọa độ B là nghiệm: \(\left\{{}\begin{matrix}2x-y-2=0\\-x+y=0\end{matrix}\right.\) \(\Rightarrow B\left(2;2\right)\)
Phương trình đường thẳng d qua C và vuông góc BN có dạng:
\(1\left(x-0\right)+1\left(y+2\right)=0\Leftrightarrow x+y+2=0\)
Gọi D là giao điểm d và BN \(\Rightarrow\left\{{}\begin{matrix}x+y+2=0\\-x+y=0\end{matrix}\right.\) \(\Rightarrow D\left(-1;-1\right)\)
Gọi E là điểm đối xứng với C qua D \(\Rightarrow E\left(-2;0\right)\) đồng thời E thuộc AB
\(\Rightarrow\overrightarrow{EB}=\left(4;2\right)=2\left(2;1\right)\Rightarrow AB\) nhận (1;-2) là 1 vtpt
Phương trình AB:
\(1\left(x-2\right)-2\left(y-2\right)=0\Leftrightarrow x-2y+2=0\)
A là giao điểm AH và AB nên: \(\left\{{}\begin{matrix}x+2y-1=0\\x-2y+2=0\end{matrix}\right.\) \(\Rightarrow A\left(-\dfrac{1}{2};\dfrac{3}{4}\right)\)
Ta giả sử:
\(\hept{\begin{cases}AB:y=-\frac{x}{2}+\frac{13}{2}\\BC:y=-2x+13\\CA:y=\frac{x}{2}+3\end{cases}}\)
Ta thấy hệ số góc của BC và CA có tích bằng -1 nên BC vuông góc CA, hay tam giác ABC vuông tại C.
Như vậy đường tròn ngoại tiếp tam giác ABC là đường tròn đường kính AB.
Giải hệ \(\hept{\begin{cases}x+2y-13=0\\2x+y-13=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{13}{3}\\y=\frac{13}{3}\end{cases}}\) ta được \(B\left(\frac{13}{3};\frac{13}{3}\right)\)
Giải hệ \(\hept{\begin{cases}x+2y-13=0\\x-2y+6=0\end{cases}}\) ta được tọa độ A.
Dùng công thức tính khoảng cách AB, ta tìm đc đường kính, sau ra suy ra bán kính em nhé :))
dạ vâng, em cám ơn cô nhiều ạ