K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2017

Đáp án B

5 tháng 10 2019

26 tháng 3 2017

20 tháng 4 2021

Làm giúp em đi ạ😗

7 tháng 8 2018

Ta có:

⇒ *  luôn có hai nghiệm phân biệt x 1 ; x 2 x 1 < x 2  với mọi m.

Áp dụng hệ thức Vi-ét ta có:

Vậy có tất cả 1001 giá trị m thỏa mãn bài toán.

 

Chọn B.

6 tháng 5 2017

1 tháng 8 2018

Chọn B

Phương pháp:

Từ ycbt suy ra ta phải tìm m để hàm số có hai điểm cực trị dương hay phương trình y' = 0 có hai nghiệm dương phân biệt.

Ta sử dụng phương trình  có hai nghiệm dương phân biệt 

Cách giải:

Ta có 

 

Từ ycbt suy ra ta phải tìm m để hàm số có hai điểm cực trị dương hay phương trình y' = 0 có hai nghiệm dương phân biệt.

Khi đó 

Mà  nên có 2018 – 3 + 1 = 2016 giá trị m thỏa mãn.

3 tháng 6 2018

Chọn B

Phương pháp:

Tính y'.

Tìm m để 

Cách giải:

Ta có 

Xét phương trình y' = 0  có 

Suy ra phương trình y' = 0 luôn có hai nghiệm 

Dễ thấy  trong khoảng  thì hàm số đồng biến.

Bài toán thỏa 

Do 

 

Vậy có  giá trị của m thỏa mãn bài toán.

Chú ý:

Cách khác: Tìm m để 

Theo định lí Viet, ta có 

Hàm số đồng biến trên  ( 2 ; + ∞ )   ⇔   phương trình y' = 0 có hai nghiệm 

 

Vậy có 1001 số nguyên m thuộc khoảng (-10000;10000)

 

23 tháng 5 2019

25 tháng 11 2023

Xét phương trình hoành độ giao điểm\(x^2\)+4x-m=0 <=> x^2+4x=m, đây là kết hợp của 2 hàm số (P):y=\(x^2\)+4x và (d):y=m.
Khi vẽ đồ thị ta thấy parabol đồng biến trên khoảng (-2;+∞)=> Điểm giao giữa parabol và đồ thị y=m là điểm duy nhất thỏa mãn phương trình có duy nhất 1 nghiệm thuộc khoảng (-3;1).Vậy để phương trình có 1 nghiệm duy nhất <=> delta=0 <=>16+4m=0<=>m=-4.

mình trình bày hơi dài mong bạn thông cảm loading...