Có nhiều nhất bao nhiêu số nguyên m thuộc nửa khoảng − 2017 ; 2017 để phương trình 2 x 2 − x − 2 m = x − 2 có nghiệm:
A. 2014
B. 2021
C. 2013
D. 2020
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét phương trình hoành độ giao điểm\(x^2\)+4x-m=0 <=> x^2+4x=m, đây là kết hợp của 2 hàm số (P):y=\(x^2\)+4x và (d):y=m.
Khi vẽ đồ thị ta thấy parabol đồng biến trên khoảng (-2;+∞)=> Điểm giao giữa parabol và đồ thị y=m là điểm duy nhất thỏa mãn phương trình có duy nhất 1 nghiệm thuộc khoảng (-3;1).Vậy để phương trình có 1 nghiệm duy nhất <=> delta=0 <=>16+4m=0<=>m=-4.
mình trình bày hơi dài mong bạn thông cảm
Ta có yêu cầu bài toán tương đương với:
Vậy có tất cả 7 số nguyên thoả mãn.
Chọn đáp án B.
Chọn đáp án B.
Ta có yêu cầu bài toán tương đương với
y ' = m x 9 - x 2 ( 9 - x 2 - m ) 2 > 0 , ∀ x ∈ 0 ; 5
Vậy có tất cả 7 số nguyên thoả mãn.
Phương trình đã cho tương đương với: x ≥ 2 2 x 2 − x − 2 m = x 2 − 4 x + 4 ⇔ x ≥ 2 x 2 + 3 x − 4 = 2 m
Xét hàm y = x 2 + 3 x − 4 trên 2 ; + ∞ ta có
BBT:
Để phương trình đã cho có nghiệm điều kiện là 2 m ≥ 6 ⇔ m ≥ 3
Mà m ∈ [ - 2017 ; 2017 ) suy ra 3 ≤ m < 2017
Vậy có nhiều nhất 2014 số nguyên thỏa mãn yêu cầu bài toán.
Đáp án cần chọn là: A