Với mọi m ∈ (-1; 1) phương trình s i n 2 x + c o s x = m có mấy nghiệm trên đoạn [0; π] ?
A. 0
B. 1
C. 2
D. 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(x\right)=\left(m-4\right)x^2+\left(m+1\right)x+2m-1\)
\(f\left(x\right)< 0,\forall x\in R\Leftrightarrow\left\{{}\begin{matrix}a< 0\\\Delta< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m-4< 0\\\left(m+1\right)^2-4\left(m-4\right)\left(2m-1\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\m^2+2m+1-4\left(2m^2-m-8m+4\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow m^2+2m+1-8m^2+36m-16< 0\)
\(\Leftrightarrow-7m^2+38m-15< 0\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\\left[{}\begin{matrix}m< \dfrac{3}{7}\\m>5\end{matrix}\right.\end{matrix}\right.\)
\(KL:m\in\left(5;+\infty\right)\)
a.
Ta có: \(m^2+1\ne0;\forall m\Rightarrow\) hàm số là hàm bậc nhất với mọi m
b.
\(m^2+1\ge1>0\) ; \(\forall m\Rightarrow\) hàm đồng biến với mọi m
a: \(=3\left(x^2+2x+\dfrac{5}{3}\right)\)
\(=3\left(x^2+2x+1+\dfrac{2}{3}\right)\)
\(=3\left(x+1\right)^2+2>=2\)
Dấu '=' xảy ra khi x=-1
b: Lấy x1<x2<-1
\(A=\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{3x_1^2+6x_1-3x_2^2-6x_2}{x_1-x_2}\)
\(=3\left(x_1+x_2\right)+6\)
Vì x1<-1, x2<-1 thì x1+x2<-2
=>3(x1+x2)+6<0
=>Hàm số nghịch biến khi x<-1
Lời giải:
a) Ta thấy:
\(y=3x^2+6x+5=3(x^2+2x+1)+2\)
\(=3(x+1)^2+2\)
Vì \((x+1)^2\ge 0, \forall x\in\mathbb{R}\Rightarrow y\geq 3.0+2=2\)
Vậy GTNN của $y$ là $2$ tại \((x+1)^2=0\Leftrightarrow x=-1\)
b)
Xét \(x_1,x_2\in\mathbb{R}|x_1,x_2>-1\). Giả sử \(x_1>x_2\)
Khi đó:
\(y(x_1)-y(x_2)=3x_1^2+6x_1+5-(3x_2^2+6x_2+5)\)
\(=3(x_1^2-x_2^2)+6(x_1-x_2)\)
\(=3(x_1+x_2)(x_1-x_2)+6(x_1-x_2)\)
\(=3(x_1-x_2)(x_1+x_2+2)\)
Vì \(x_1>x_2>-1\Rightarrow x_1-x_2>0; x_1+x_2+2>0\)
Do đó: \(y(x_1)-y(x_2)=3(x_1-x_2)(x_1+x_2+2)>0\Rightarrow y(x_1)>y(x_2)\)
Với mọi \(x_1>x_2>-1\in\mathbb{R}\) thì \(y(x_1)>y(x_2)\) nên hàm số đồng biến với mọi $x>-1$
Chứng minh nghịch biến hoàn toàn tương tự, ta chỉ cần chỉ ra \(y(x_1)< y(x_2)\) theo cách trên là được.
a/ \(\Delta'=\left(m+1\right)^2-\left(3m+7\right)< 0\)
\(\Leftrightarrow m^2-m-6< 0\)
\(\Rightarrow-2< x< 3\)
b/ \(\Delta'=\left(m-1\right)^2-\left(m^2-4\right)< 0\)
\(\Leftrightarrow5-2m< 0\Rightarrow m>\frac{5}{2}\)
`@` Thay `m=3` vào ptr có: `x^2-3x+3-1=0<=>x^2-3x+2=0`
Ptr có: `a+b+c=1-3+2=0=>x_1 =1;x_2=-2`
`@` Ptr có: `\Delta=(-m)^2-4m+4=m^2-4m+4=(m-2)^2 >= 0` (Luôn đúng `AA m`)
`=> AA m` ptr luôn có nghiệm.
______________________________
`x^2-2mx+m=7<=>x^2-2mx+m-7=0`
Ptr có: `\Delta'=(-m)^2-m+7=m^2-m+7=(m-1/2)^2+27/4 > 0 AA m`
`=>` Ptr có `2` nghiệm pb `AA m`
a) Tam thức \(2{x^2} + 3x + m + 1\) có \(\Delta = {3^2} - 4.2.\left( {m + 1} \right) = 1 - 8m\)
Vì \(a = 2 > 0\) nên để \(2{x^2} + 3x + m + 1 > 0\) với mọi \(x \in \mathbb{R}\) khi và chỉ khi \(\Delta < 0 \Leftrightarrow 1 - 8m < 0 \Leftrightarrow m > \frac{1}{8}\)
Vậy khi \(m > \frac{1}{8}\) thì \(2{x^2} + 3x + m + 1 > 0\) với mọi \(x \in \mathbb{R}\)
b) Tam thức \(m{x^2} + 5x - 3\) có \(\Delta = {5^2} - 4.m.\left( { - 3} \right) = 25 + 12m\)
Đề \(m{x^2} + 5x - 3 \le 0\) với mọi \(x \in \mathbb{R}\) khi và chỉ khi \(m < 0\) và \(\Delta = 25 + 12m \le 0 \Leftrightarrow m \le - \frac{{25}}{{12}}\)
Vậy \(m{x^2} + 5x - 3 \le 0\) với mọi \(x \in \mathbb{R}\) khi \(m \le - \frac{{25}}{{12}}\)
X^2 + 2( m+1) X - m+3 =0
ta có
( m + 1 ) + m-3 = 0
m^2 + 3m -2 = 0
m1 = \(\frac{-3\sqrt{17}}{2}\)
m2 = \(\frac{-3-\sqrt{17}}{2}\)
\(y'=x^2-2\left(m-2\right)x+m^2-3m+2\)
a. Hàm đồng biến trên khoảng đã cho khi và chỉ khi:
\(y'\ge0\) ; \(\forall x>3\)
\(\Leftrightarrow x^2-2\left(m-2\right)x+m^2-3m+2\ge0\) ; \(\forall x>3\)
Ta có: \(\Delta'=\left(m-2\right)^2-\left(m^2-3m+2\right)=-m+2\)
TH1: \(\Delta'\le0\Leftrightarrow m\ge2\)
TH2: \(\left\{{}\begin{matrix}\Delta'>0\\x_1< x_2\le2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\\left(x_1-2\right)\left(x_2-2\right)\ge0\\\dfrac{x_1+x_2}{2}< 2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\x_1x_2-2\left(x_1+x_2\right)+4\ge0\\x_1+x_2< 4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\m^2-3m+2-4\left(m-2\right)+4\ge0\\2\left(m-2\right)< 4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\m^2-7m+4\ge0\\m< 4\end{matrix}\right.\) \(\Leftrightarrow m< 2\)
Kết hợp lại ta được hàm đồng biến trên \(\left(2;+\infty\right)\) với mọi m
b.
Hàm số đồng biến trên khoảng đã cho khi và chỉ khi:
\(y'\ge0\) ; \(\forall x< 0\)
\(\Leftrightarrow x^2-2\left(m-2\right)x+m^2-3m+2\ge0\) ; \(\forall x< 0\)
TH1: \(\Delta'=-m+2\le0\Leftrightarrow m\ge2\)
TH2: \(\left\{{}\begin{matrix}\Delta'>0\\0\le x_1< x_2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\x_1+x_2=2\left(m-2\right)>0\\x_1x_2=m^2-3m+2\ge0\end{matrix}\right.\) \(\Rightarrow\) ko tồn tại m thỏa mãn
Kết hợp lại ta được: \(m\ge2\)
s i n 2 x + c o s x = m <=> - c o s x 2 x + c o s x + 1 = 0
Đặt t= cos x =>
=>f’(t)=-2t + 1.
Do x ∈ [0; π] => t ∈ [-1; 1]
Số nghiệm của phương trình đã cho chính là số giao điểm của đồ thị hàm số y = f(t) và đường thẳng y = m.
Từ bảng biến thiên ta có m ∈ (-1; 1) thì f(t)=m có 2 nghiệm
Chọn C