K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2017

Chọn C

 Dựa vào đồ thị của hàm số y=  f’(x) ta thấy:

+ f’(x) > 0  khi x ∈ (-2;1) ∪ (1; + ∞)

 => Hàm số y= f(x)  đồng biến trên các khoảng  ( -2; 1) và ( 1; + ∞).

 Suy ra A đúng, B đúng.

+ Ta  thấy : f’(x)< 0 khi x< -2   ( chú ý nhận dạng đồ thị của hàm số  bậc ba)

=>  Hàm số y= f( x) nghịch biến trên khoảng ( - ∞; -2) .

 Suy ra D đúng.

+ Dùng phương pháp loại trừ, ta chọn C

20 tháng 2 2019

Chọn C 

Trên  đoạn [ - 1; 1] đồ thị hàm số y= f’( x)  nằm phía trên trục hoành.

=> Trên  đoạn [ - 1; 1] thì f’( x) > 0.

=> Trên  đoạn [ - 1; 1] thì  hàm số y= f( x) đồng biến

13 tháng 9 2019

Chọn C

Ta có: 

Dựa vào đồ thị:

Dựa vào đồ thị, ta cũng có: 

Từ (1),(2) suy ra a + c > 4a + c > 0.

8 tháng 5 2017

13 tháng 3 2019

22 tháng 6 2017

Ta có bảng biến thiên như hình vẽ bên.

Vì f( b) < 0  nên rõ ràng có nhiều nhất 2 giao điểm.

Chọn B.

1 tháng 6 2017

8 tháng 10 2019

Chọn A

Phương pháp:

Nếu f ' ( x ) ≥ 0 ,   ∀ x ∈ a ; b  và chỉ bằng 0 tại hữu hạn điểm trên đó thì f(x) đồng biến trên khoảng (a;b).

Nếu  f ' ( x ) ≤ 0 ,   ∀ x ∈ a ; b  và chỉ bằng 0 tại hữu hạn điểm trên đó thì f(x) nghịch biến trên khoảng (a;b) Cách giải:

Quan sát đồ thị hàm số y=f’(x) , ta thấy f’(x) >0 =>Hàm số f (x) đồng biến trên

khoảng (-1;1).

=>Mệnh đề ở câu A là sai.

5 tháng 12 2018

12 tháng 3 2019

Chọn D