Tìm các giá trị của m để hàm số y = x 2 + mx + 5 luôn đồng biến trên (1; + ∞ )
A. m < -2
B. m ≥ -2
C. m = -4
D. Không xác định được
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(y'=m-3cos3x\)
Hàm đồng biến trên R khi và chỉ khi \(m-3cos3x\ge0\) ; \(\forall x\)
\(\Leftrightarrow m\ge3cos3x\) ; \(\forall x\)
\(\Leftrightarrow m\ge\max\limits_{x\in R}\left(3cos3x\right)\)
\(\Leftrightarrow m\ge3\)
2.
\(y'=1-m.sinx\)
Hàm đồng biến trên R khi và chỉ khi:
\(1-m.sinx\ge0\) ; \(\forall x\)
\(\Leftrightarrow1\ge m.sinx\) ; \(\forall x\)
- Với \(m=0\) thỏa mãn
- Với \(m< 0\Rightarrow\dfrac{1}{m}\le sinx\Leftrightarrow\dfrac{1}{m}\le\min\limits_R\left(sinx\right)=-1\)
\(\Rightarrow m\ge-1\)
- Với \(m>0\Rightarrow\dfrac{1}{m}\ge sinx\Leftrightarrow\dfrac{1}{m}\ge\max\limits_R\left(sinx\right)=1\)
\(\Rightarrow m\le1\)
Kết hợp lại ta được: \(-1\le m\le1\)
a: \(y=-x^3-3x^2+\left(5-m\right)x\)
=>\(y'=-3x^2-3\cdot2x+5-m\)
=>\(y'=-3x^2-6x+5-m\)
Để hàm số nghịch biến trên R thì \(y'< =0\forall x\)
=>\(\left\{{}\begin{matrix}\text{Δ}< =0\\a< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(-6\right)^2-4\cdot\left(-3\right)\left(5-m\right)< =0\\-3< 0\end{matrix}\right.\)
=>\(36+12\left(5-m\right)< =0\)
=>\(36+60-12m< =0\)
=>\(-12m+96< =0\)
=>-12m<=-96
=>m>=8
b: \(y=x^3+\left(2m-2\right)\cdot x^2+mx\)
=>\(y'=3x^2+2\left(2m-2\right)\cdot x+m\)
=>\(y'=3x^2+\left(4m-4\right)x+m\)
Để hàm số đồng biến trên R thì y'>=0 với mọi x
=>\(\left\{{}\begin{matrix}\text{Δ}< =0\\a>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3>0\\\left(4m-4\right)^2-4\cdot3\cdot m< =0\end{matrix}\right.\)
=>\(16m^2-32m+16-12m< =0\)
=>\(16m^2-44m+16< =0\)
=>\(4m^2-11m+4< =0\)
=>\(\dfrac{11-\sqrt{57}}{8}< =m< =\dfrac{11+\sqrt{57}}{8}\)
Đáp án B
Ta có: y ' = 1 2 x 3 - 6 x 2 + m x + 2 3 x 2 - 12 x + m . ln 1 2 = - 1 2 x 3 - 6 x 2 + m x + 2 3 x 2 - 12 x + m . ln 2
Hàm số y = 1 2 x 3 - 6 x 2 + m x + 2 luôn đồng biến trên khoảng 1 ; 3 ⇒ y ' > 0 ∀ x ∈ 1 ; 3
⇔ 3 x 2 - 12 x + m ≤ 0 ∀ x ∈ 1 ; 3 ⇔ m ≤ 12 x - 3 x 2 = g x ∀ x ∈ 1 ; 3 ⇔ m ≤ M i n 1 ; 3 g x
Lại có g ' x = 12 - 6 x ⇔ x = 2 ⇒ g 2 = 12 ; lim x → 1 g x = lim x → 3 g x = 9
Lập bảng biến thiên suy ra m ≤ 9 là giá trị cần tìm. Vậy có 9 giá trị nguyên dương của m.
Hàm là \(y=mx^2-\left(m^2+1\right)x+3\) đúng không nhỉ?
- Với \(m=0\) hàm nghịch biến trên R (không thỏa)
- Với \(m\ne0\) hàm số đồng biến trên khoảng đã cho khi:
\(\left\{{}\begin{matrix}m>0\\\dfrac{m^2+1}{2m}\le1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m>0\\m^2+1\le2m\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m>0\\\left(m-1\right)^2\le0\end{matrix}\right.\)
\(\Rightarrow m=1\)
\(y'=\dfrac{1}{3}\cdot3x^2-m\cdot2x+2m+3=x^2-2m\cdot x+2m+3\)
Để hàm số đồng biến trên R thì y'>=0 với mọi x thuộc R
=>Δ=(-2m)^2-4(2m+3)<=0 và 1>0
=>4m^2-8m-12<=0
=>m^2-2m-3<=0
=>(m-3)(m+1)<=0
=>-1<=m<=3
mà m nguyên
nên \(m\in\left\{-1;0;1;2;3\right\}\)
Đáp án A
Ta có y ' = − m + 1 x − 1 2
hàm số đồng biến trên từng khoảng xác định của nó ⇔ y ' > 0 ⇔ − m − 1 > 0 ⇔ m < − 1
a: ĐKXĐ: x<>m
=>TXĐ: D=R\{m}
\(y=\dfrac{mx-2m-3}{x-m}\)
=>\(y'=\dfrac{\left(mx-2m-3\right)'\cdot\left(x-m\right)-\left(mx-2m-3\right)\left(x-m\right)'}{\left(x-m\right)^2}\)
\(=\dfrac{m\left(x-m\right)-\left(mx-2m-3\right)}{\left(x-m\right)^2}\)
\(=\dfrac{mx-m^2-mx+2m+3}{\left(x-m\right)^2}=\dfrac{-m^2+2m+3}{\left(x-m\right)^2}\)
Để hàm số đồng biến trên từng khoảng xác định thì \(y'>0\forall x\in TXĐ\)
=>\(\dfrac{-m^2+2m+3}{\left(x-m\right)^2}>0\)
=>\(-m^2+2m+3>0\)
=>\(m^2-2m-3< 0\)
=>(m-3)(m+1)<0
TH1: \(\left\{{}\begin{matrix}m-3>0\\m+1< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m>3\\m< -1\end{matrix}\right.\)
=>\(m\in\varnothing\)
TH2: \(\left\{{}\begin{matrix}m-3< 0\\m+1>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m>-1\\m< 3\end{matrix}\right.\)
=>-1<m<3
b: TXĐ: D=R\{m}
\(y=\dfrac{mx-4}{x-m}\)
=>\(y'=\dfrac{\left(mx-4\right)'\left(x-m\right)-\left(mx-4\right)\left(x-m\right)'}{\left(x-m\right)^2}\)
\(=\dfrac{m\left(x-m\right)-\left(mx-4\right)}{\left(x-m\right)^2}\)
\(=\dfrac{mx-m^2-mx+4}{\left(x-m\right)^2}=\dfrac{-m^2+4}{\left(x-m\right)^2}\)
Để hàm số đồng biến trên từng khoảng xác định thì \(\dfrac{-m^2+4}{\left(x-m\right)^2}>0\)
=>\(-m^2+4>0\)
=>\(-m^2>-4\)
=>\(m^2< 4\)
=>-2<m<2
a: ĐKXĐ: x<>-m
=>TXĐ: D=R\{-m}
\(y=\dfrac{mx-2m+15}{x+m}\)
=>\(y'=\dfrac{\left(mx-2m+15\right)'\left(x+m\right)-\left(mx-2m+15\right)\left(x+m\right)'}{\left(x+m\right)^2}\)
\(=\dfrac{m\left(x+m\right)-mx+2m-15}{\left(x+m\right)^2}\)
\(=\dfrac{m^2+2m-15}{\left(x+m\right)^2}\)
Để hàm số đồng biến trên từng khoảng xác định là \(y'>0\forall x\in TXĐ\)
=>\(\dfrac{m^2+2m-15}{\left(x+m\right)^2}>0\)
=>\(m^2+2m-15>0\)
=>(m+5)(m-3)>0
TH1: \(\left\{{}\begin{matrix}m+5>0\\m-3>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m>3\\m>-5\end{matrix}\right.\)
=>m>3
TH2: \(\left\{{}\begin{matrix}m+5< 0\\m-3< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m< -5\\m< 3\end{matrix}\right.\)
=>m<-5
b: TXĐ: D=R\{-m}
\(y=\dfrac{mx+4m}{x+m}\)
=>\(y'=\dfrac{\left(mx+4m\right)'\left(x+m\right)-\left(mx+4m\right)\left(x+m\right)'}{\left(x+m\right)^2}\)
\(=\dfrac{m\left(x+m\right)-mx-4m}{\left(x+m\right)^2}\)
\(=\dfrac{mx+m^2-mx-4m}{\left(x+m\right)^2}=\dfrac{m^2-4m}{\left(x+m\right)^2}\)
Để hàm số đồng biến trên từng khoảng xác định thì \(y'>0\forall x\)
=>\(\dfrac{m^2-4m}{\left(x+m\right)^2}>0\)
=>\(m^2-4m>0\)
=>\(m\left(m-4\right)>0\)
TH1: \(\left\{{}\begin{matrix}m>0\\m-4>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m>0\\m>4\end{matrix}\right.\)
=>m>4
TH2: \(\left\{{}\begin{matrix}m< 0\\m-4< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m< 0\\m< 4\end{matrix}\right.\)
=>m<0
Đáp án B