Giải giúp mình bài này với Chứng minh rằng hàm số thảo mãn hệ thức tương ứng đã cho y = ln(sinx) ; y’ + y’’sinx + tan = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có : \(y'=\cos x.e^{\sin x}\Rightarrow y"=-\sin x.e^{\sin x}+\cos^2x.e^{\sin x}\)
\(\Rightarrow y"=-\sin x.y+\cos x.y'\Rightarrow y'\cos x-y.\sin x-y"=0\)
=> Điều phải chứng minh
![](https://rs.olm.vn/images/avt/0.png?1311)
\(y'=\frac{1-\ln x-\left(1-\ln x-1\right)}{x^2\left(1-\ln x\right)^2}=\frac{1}{x^2\left(1-\ln x\right)^2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
88+220=(23)8+220=224+220=224(216+1)=224x17chia het cho 17
![](https://rs.olm.vn/images/avt/0.png?1311)
\(y'=\left(2m+1\right)\cos x+3-m\)
Hàm số đã cho đồng biến trên R \(\Leftrightarrow y'\ge0,\forall x\in R\)
\(\Leftrightarrow\left(2m+1\right)\cos x\le m-3\) (1)
*TH: \(2m+1< 0\Leftrightarrow m< \frac{-1}{2}\), ta có
\(\left(1\right)\Leftrightarrow\cos x\ge\frac{m-3}{2m+1}\) (không thoả với mọi x)
*TH: \(2m+1>0\Leftrightarrow m>\frac{-1}{2}\), ta có
\(\left(1\right)\Leftrightarrow\cos x\le\frac{m-3}{2m+1}\) (2)
(2) đúng với mọi x khi và chỉ khi \(\left|\frac{m-3}{2m+1}\right|>1\Leftrightarrow\left[\begin{array}{nghiempt}m< -4\\m>\frac{2}{3}\end{array}\right.\)
kết hợp \(m>\frac{-1}{2}\) ta có m > 3/2 là giá trị cần tìm
![](https://rs.olm.vn/images/avt/0.png?1311)
- Hàm số \(y=sin\left(x\right)\)
Tập xác định D = R.
Với mọi \(x\in R\) thì \(-x\in R\) và \(sin\left(-x\right)=-sin\left(x\right)\)
Vậy nên \(y=sin\left(x\right)\) là hàm số lẻ.
- Hàm số \(y=cot\left(x\right)\)
Tập xác định \(D=R\backslash\left\{k\pi,k\in R\right\}\)
Với mọi \(x\in R\) thì \(-x\in R\) và \(cot\left(-x\right)=-cot\left(x\right)\)
Vậy nên \(y=cot\left(x\right)\) là hàm số lẻ.
\(y'=\dfrac{cosx}{sinx}\), \(y''=-\dfrac{1}{sin^2x}\).
Vì vậy:
\(y'+y''.sinx+tanx=\dfrac{cosx}{sinx}+\dfrac{-1}{sin^2x}.sinx+\dfrac{sinx}{cosx}\)
\(=\dfrac{cosx}{sinx}+\dfrac{-1}{sinx}+\dfrac{sinx}{cosx}\)
\(=\dfrac{cosx-1}{sinx}+\dfrac{sinx}{cosx}\)\(=\dfrac{cos^2x+sin^2x-cosx}{sinx.cosx}=\dfrac{1-cosx}{sinx.cosx}\).
Bạn xem lại đề nhé.