Cho ΔABC vuông tại A có AB=6cm, AC=8cm; đường phân giác BI. Kẻ IH vuông góc với BC (H∈BC), gọi K là giao điểm của AB và IH.
a) Tính BC?
b)c/m BK=BC từ đó suy ra BI là đường trung trực của KC
c)c/m IB+IC+IK<20
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Anh bổ sung là : AH vuông góc với BC nhé
\(BC=HB+HC=2+8=10\left(cm\right)\)
\(\text{Áp dụng định lý Pytago trong tam giác ABC vuông tại A:}\)
\(BC^2=AB^2+AC^2\)
\(\Rightarrow AB=\sqrt{BC^2-AC^2}=\sqrt{10^2-6^2}=8\left(cm\right)\)
Bổ sung đề \(AH\) là đường cao.
Áp dụng hệ thức lượng vào tam giác vuông \(ABC\) và đường cao \(AH\) ta có :
\(AB^2=BC.BH\)
\(\Rightarrow AB=\sqrt{BC.BH}=\sqrt{\left(8+2\right).2}=\sqrt{20}=2\sqrt{5}\)\((cm)\)
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=8^2+6^2=100\)
=>\(BC=\sqrt{100}=10\left(cm\right)\)
Xét ΔBAC có BD là phân giác
nên \(\dfrac{AD}{AB}=\dfrac{CD}{CB}\)
=>\(\dfrac{AD}{8}=\dfrac{CD}{10}\)
=>\(\dfrac{AD}{4}=\dfrac{CD}{5}\)
mà AD+CD=AC=6cm(Do D nằm giữa A và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{4}=\dfrac{CD}{5}=\dfrac{AD+CD}{4+5}=\dfrac{6}{9}=\dfrac{2}{3}\)
=>\(AD=4\cdot\dfrac{2}{3}=\dfrac{8}{3}\left(cm\right);CD=5\cdot\dfrac{2}{3}=\dfrac{10}{3}\left(cm\right)\)
Xét ΔCAB có CE là phân giác
nên \(\dfrac{AE}{AC}=\dfrac{BE}{BC}\)
=>\(\dfrac{AE}{6}=\dfrac{BE}{10}\)
=>\(\dfrac{AE}{3}=\dfrac{BE}{5}\)
mà AE+BE=AB=8cm(E nằm giữa A và B)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AE}{3}=\dfrac{BE}{5}=\dfrac{AE+BE}{3+5}=\dfrac{8}{8}=1\)
=>\(AE=3\cdot1=3cm;BE=5\cdot1=5cm\)
a) Xét ΔABC vuông tại A và ΔHAC vuông tại H có
\(\widehat{C}\) chung
Do đó: ΔABC\(\sim\)ΔHAC(g-g)
a: Xét ΔMBA và ΔMCE có
MB=MC
góc BMA=góc CME
MA=ME
=>ΔMBA=ΔMCE
b: ΔMBA=ΔMCE
=>góc MBA=góc MCE
=>AB//CE
c: AB<AC<CB
=>góc C<góc B<góc A
Tham khảo:
a)Xét △ ABC có:
IB là tia phân giác \(\widehat{ABC}\)
IC là tia phân giác \(\widehat{ACB}\)
⇒ I là điểm đồng quy của 3 tia phân giác △ ABC
Suy ra: AI là phân giác \(\widehat{BAC}\)
Suy ra: I là tâm đường tròn nội tiếp △ ABC
R = d ( I, AB ) = d ( I, AC )
⇒ ID = IE
Xét △ ADI và △ AIE có
AI chung
\(\widehat{DAI}\) = \(\widehat{IAE}\)
ID = IE
⇒ △ADI = △AIE ( c - g - c )
⇒ AD = AE
a: S CAB=1/2*CA*CB=1/2*CH*AB
=>CA*CB=CH*AB
b: AB=căn 6^2+8^2=10cm
CH=6*8/10=4,8cm
a: BC=căn 6^2+8^2=10cm
b: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
c: DA=DE
DE<DC
=>DA<DC
d: Xét ΔDAI vuông tại A và ΔDEC vuông tại E có
DA=DE
góc ADI=góc EDC
=>ΔDAI=ΔDEC
=>DI=DC
=>ΔDIC cân tại D
Bạn vẽ hình ra nhé,rồi xem cách giải của mình:
a) Xét tam giác ABC ta có : \(BC^2=AB^2+AC^2\)( Định lí Pytago)
=>\(BC^2\) =\(6^2-8^2\)=100
=> BC = \(\sqrt{100}\) =10cm
b)Xét tam giác vuông BAI và tam giác vuông BHI, ta có:
BI là cạnh huyền chung
Góc ABI= Góc HBI (gt)
=> tam giác BAI = tam giác BHI (ch-gn)
=> AB=BH (2 cạnh tương ứng )(1)
Xét tam giác AIK và tam giác HIK, ta có:
AI=HI (2 cạnh tương ứng của tam giác BAI = BHI)
Góc AIK= Góc HIC( 2 góc đối đỉnh)
Góc IAK = IHC (g-c-g)
=> AK= HC( 2 cạnh tương ứng ) (2)
Từ (1) và (2), ta => AB+AK=BH+HC
=> BK=BC
c)Vẽ IN ll BC => IN vuông góc KH
Vẽ IM ll AB => IM vuông góc IC
Ta có : tam giác BNI = Tam giác IMB (g-c-g)
=> IN=BM(2 cạnh tương ứng)
Xét tam giác BNI : IB<IN+BN( BĐT tam giác )
hay IB<BN+BM (1)
Xét tam giác vuông NIK : IK<NK( cạnh góc vuông < cạnh huyền)(2)
Xét tam giác vuông MIC : IC<MC(cạnh góc vuông< cạnh huyền)(3)
Từ (1),(2),(3). Cộng theo vế, ta có :
IB+IK+IC<BN+NK+BM+MC
IB+IK+IC<BK+BC
IB+IK+IC<2BC
IB+IK+IK<2.10=20cm ( đpcm)