cho tam giác ABC vuông tại A; đường phân giác BE. kẻ EH vuông góc với BC(H thuộc BC). gọi K là giao điểm của AB và HE. chứng minh:
a) tam giác ABE= tam giác HBE
b) BE là đường trung trực của của đoạn thẳng AH
C) EK=EC
d) AE<EC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sửa đề nha
cho tam giác ABC vuông tại A , trên tia đối tia AB lấy đỉnh M sao cho AB=AM a. CMR : tam giác ABC = tam giác AMC
b. kẻ AH vuông góc với BC tại H kẻ AK vuông gói với MC tại K CMR : BH = MK
c. CMR : HK // BM
Xét \(\Delta BACvà\Delta MACcó\)
AC:chung
AM=AB(gt)
\(\widehat{MAC}=\widehat{BAC}\)( vì AC⊥BC)
a) tam giac ABE = tam giac HBE ( c=g=c) : AB= BE .( gt) BE= BE ( canh chung) goc ABE= goc HBE ( BE la tia phan giac)
b) ta co : BH=BA (gt)
EA=EH ( tam giac ABE= tam giac HBE)
===? B va E nam tren duong trung truc cua AH
---> BE la duong trung truc cua AH
c) cm tam giac EKA= tam giac ECH ( g-c-g) : AE= EH , goc KAE= goc EHC (=90) , goc AEK = goc HEC ( 2 goc doi dinh)
d) tu diem Eden duong thang HC ta co
EC la duong xien, EH la duong vuong goc ) EH vuong goc BC)
===> EH< EC ( quan he duong xien duong vuong goc)
ma EH=EA ( tam giac ABE = tam giac BEH )
nen AE < EC
Vào đây tham khảo nhé bạn
Câu hỏi của Lộc Trần Duy - Toán lớp 7 - Học toán với OnlineMath
....