Cho Δ ABC nhọn nội tiếp (O); đường kính AD, đường cao BE và CF cắt nhau tại H.
a) CMR: tứ giác AEHF nội tiếp và \(\widehat{AFE}\) = \(\widehat{ACB}\)
b) Gọi I là giao điểm của AD và EF cmr: BDIF nội tiếp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Do góc BFC = góc BEC =90 .Mà hai góc này cùng nhìn cạnh BC =>F,E thuộc cung BC chứa góc 90 Nên BFEC nội tiếp
Do góc AFH + góc AEH =180 .Mà hai góc này ở vị trí đối diện nhau trong AFHE =>AFHE nội tiếp
b) Chứng minh được: BFH đồng dạng với CEH (g.g)=>FH/HE=BH/HC=>đpcm
c) góc ABD= góc AKC (cung chắn cung AC) .Do góc ACK chắn nửa (O) đường kính AK =>góc ACK=90
Chứng minh được ABD đồng dạng với ACK(g.g)=>AD/AC=AB/AK=>đpcm
d) Nhất thời chưa nghĩ ra .Mẹ cấm cho dùng máy tính nữa
a: Xét tứ giác AHMK có \(\widehat{AHM}+\widehat{AKM}=90^0+90^0=180^0\)
nên AHMK là tứ giác nội tiếp đường tròn đường kính AM
Tâm là trung điểm của AM
b: Xét (O) có
\(\widehat{BAD}\) là góc nội tiếp chắn cung BD
\(\widehat{BCD}\) là góc nội tiếp chắn cung BD
Do đó: \(\widehat{BAD}=\widehat{BCD}\left(1\right)\)
Ta có: AKMH là tứ giác nội tiếp
=>\(\widehat{KAM}=\widehat{KHM}\)
=>\(\widehat{BAD}=\widehat{KHM}\left(2\right)\)
Từ (1),(2) suy ra \(\widehat{BCD}=\widehat{KHM}\)
Xét (O) có
\(\widehat{DAC}\) là góc nội tiếp chắn cung DC
\(\widehat{DBC}\) là góc nội tiếp chắn cung DC
Do đó: \(\widehat{DAC}=\widehat{DBC}\left(3\right)\)
Ta có: AHMK là tứ giác nội tiếp
=>\(\widehat{MAH}=\widehat{MKH}=\widehat{DAC}\left(4\right)\)
Từ (3),(4) suy ra \(\widehat{DBC}=\widehat{MKH}\)
Xét ΔMKH và ΔDBC có
\(\widehat{MKH}=\widehat{DBC}\)
\(\widehat{MHK}=\widehat{DCB}\)
Do đó: ΔMKH~ΔDBC
Lời giải:
a)
Xét tứ giác $AEHF$ có tổng 2 góc đối \(\widehat{AEH}+\widehat{AFH}=90^0+90^0=180^0\) nên $AEHF$ là tứ giác nội tiếp.
(đpcm)
Xét tứ giác $BFEC$ có \(\widehat{BFC}=90^0=\widehat{BEC}\) và 2 góc này cùng nhìn cạnh $BC$ nên $BFEC$ là tứ giác nội tiếp.
\(\Rightarrow \widehat{ECB}+\widehat{EFB}=180^0\)
Mà \(\widehat{AFE}+\widehat{EFB}=\widehat{AFB}=180^0\)
\(\Rightarrow \widehat{AFE}=\widehat{ECB}=\widehat{ACB}\) (đpcm)
b)
Theo phần a: \(\widehat{AFE}=\widehat{ACB}\)
Mà \(\widehat{ACB}=\widehat{ADB}\) (góc nt cùng chắn cung $AB$)
\(\Rightarrow \widehat{AFE}=\widehat{ADB}\)
\(\Leftrightarrow 180^0-\widehat{IFB}=\widehat{IDB}\)
\(\Leftrightarrow 180^0=\widehat{IFB}+\widehat{IDB}\)
Như vậy tứ giác $BDIF$ có tổng 2 góc đối nhau bằng $180^0$ nên là tứ giác nội tiếp.
Hình vẽ: