K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2021

Help me please 😭

1 tháng 11 2021

tham khảo

a) Ta có: (F là trung điểm của AD)

(E là trung điểm của BC)

mà AD=BC(Hai cạnh đối trong hình bình hành ABCD)

nên AF=BE

Xét tứ giác AFEB có 

AF//BE(AD//BC, F∈AD, E∈BC)

AF=BE(cmt)

Do đó: AFEB là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Ta có: (gt)

mà (F là trung điểm của AD)

nên AB=AF

Hình bình hành AFEB có AB=AF(cmt)

nên AFEB là hình thoi(Dấu hiệu nhận biết hình thoi)

⇒Hai đường chéo AE và BF vuông góc với nhau tại trung điểm của mỗi đường(Định lí hình thoi)

hay AE⊥BF(đpcm)

b) Ta có: AFEB là hình thoi(cmt)

nên AF=FE=EB=AB và (Số đo của các cạnh và các góc trong hình thoi AFEB)

hay 

Xét ΔFEB có FE=EB(cmt)

nen ΔFEB cân tại E(Định nghĩa tam giác cân)

Xét ΔFEB cân tại E có (cmt)

nên ΔFEB đều(Dấu hiệu nhận biết tam giác cân)

⇒(Số đo của một góc trong ΔFEB đều)

Ta có: AB//FE(hai cạnh đối trong hình thoi ABEF)

nên (hai góc đồng vị)

hay 

Ta có: tia FE nằm giữa hai tia FB,FD

nên 

(1)

Ta có: AD//BC(hai cạnh đối trong hình bình hành ABCD)

nên (hai góc trong cùng phía bù nhau)

hay (2)

Từ (1) và (2) suy ra 

Xét tứ giác BFDC có 

FD//BC(AD//BC, F∈AD)

nên BFDC là hình thang có hai đáy là FD và BC(Định nghĩa hình thang)

Hình thang BFDC có (cmt)

nên BFDC là hình thang cân(Dấu hiệu nhận biết hình thang cân)

18 tháng 8 2016

A) ta có: MN//AB//CD ( MN và AB cùng vuông góc với CE) 
và MD//NC (AD//BC) 
=> MNCD là hình bình hành (1) 
MD=AD/2 
MN=AB=AD/2 
nên MD=MN (2) 
từ (1)(2) => MNCD là hình thoi. 
B) do MN//AB//CD(câu a) 
và M là trung điểm AD 
=> F là trung điểm EC => MF là đường trung tuyến của tam giác MEC 
với lại MF là đường cao của tam giác MEC(MF vuông góc với EC) 
=> tam giác MEC cân tại M 
C) tam giác MEC cân tại M và MF là đường cao của tam giác MEC 
=> MF là đường phân giác của tam giác MEC 
=> góc EMF=góc FMC 
góc AEM=góc EMF(AB//MN) 
góc FMC=góc CMD(MNCD là hình thoi nên đường chéo MC là phân giác) 
từ 3 điều trên suy ra góc AEM=EMF=FMC=CMD 
=> 2AEM=FMC+CMD 
=> 2AEM=NMD=BAD(AB//MN) 

18 tháng 8 2016

Bổ sung: Vậy EMD = 3AEM

26 tháng 10 2023

Đề bài yêu cầu gì vậy bạn?

15 tháng 8 2016

Kẻ MH (H thuộc BC) song song AB cắt EC tại I. Ta có ngay H là trung điểm BC. Do đó I là trung điểm EC. Suy ra tam giác MIE = tam giác MIC. Suy ra góc EMI=CMI. Và AEM=EMI (so le trong) (1)

Lại có tam giác DMC cân tại D nên DMC=DCM, và DCM=CMI (so le trong) (2).

Từ (1) và (2), suy ra: EMD = EMI+CMI+DMC= 3AEM.

Xét tứ giác BMCD có 

BM//CD

BM=CD

Do đó: BMCD là hình bình hành

Suy ra: Hai đường chéo BC và MD cắt nhau tại trung điểm của mỗi đường

mà E là trung điểm của BC

nên E là trung điểm của MD

hay M,E,D thẳng hàng

6 tháng 11 2018

Do P là trung điểm của BC nên :

=) CP=BP=\(\frac{BC}{2}\)

Do Q là trung điểm của AD nên:

=) AQ=QD=\(\frac{A\text{D}}{2}\)

Mà AD=BC (Tính chất hình bình hành)

=) BP=AQ=PC=QD (1)

Mà 2 cạch AP và BP lại song song với nhau (2)

TỪ (1)và(2) =) Tứ giác ABPQ là hình bình hành

6 tháng 11 2018

b) Do AD=2AB =) AB =\(\frac{A\text{D}}{2}\)=) AQ=AB

Mà AQ=BP (Tính chất hình bình hành)

Và AB=PQ (Tính chất hình bình hành)

=) AB=BP=PQ=AQ

=) Tứ giác ABPQ là hình thoi

=) 2 đường chéo AP và BQ vuông góc với nhau

Hay AP \(\perp\)BQ

c) Do tứ giác ABPQ là hình bình hành nên =) \(\widehat{A}\) =\(\widehat{P}\)\(60^0\)

Xét tam giác BPQ có :

QP=PB (chứng minh trên )

\(\widehat{P}\)=  \(60^0\)

=) Tam giác BPQ là tam giác đều

=) \(\widehat{B}\) =\(60^0\) (1)

Mà \(\widehat{A}\) =\(\widehat{C}\)=\(60^0\)(Do ABCD là hình bình hành ) (2)

Và QP lại song song với BC =) BQDC là hình thang (3)

Tu (1) ;(2) va (3) =) BQDC là hình thang cân