cho x y z thỏa mãn : x+y+z=6; x^2+y^2+z^2=12
tinh gtbt. P=(x-1)^2+(y-1)^6+(z-3)^2015
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng bđt cô si ta có:
\(\left(x+y\right)+4\ge4\sqrt{x+y};\left(y+z\right)+4\ge4\sqrt{y+z};\left(z+x\right)+4\ge4\sqrt{z+x}\)
\(\Rightarrow\left(x+y\right)+\left(y+z\right)+\left(z+x\right)+12\ge4\left(\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\right)\)
\(\Rightarrow24\ge4\left(\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\right)\Rightarrow6\ge\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\)
Bài làm:
Dễ thấy a,b,c khác 0
Ta có: \(\frac{xy}{x+y}=\frac{12}{7}\Leftrightarrow\frac{x+y}{xy}=\frac{7}{12}\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{7}{12}\) (1)
Tương tự ta tách ra được: \(\frac{1}{y}+\frac{1}{z}=-\frac{1}{6}\) (2) ; \(\frac{1}{z}+\frac{1}{x}=-\frac{1}{4}\) (3)
Cộng vế (1);(2) và (3) lại ta được:
\(2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{6}\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{12}\) (4)
Cộng vế (1) và (2) lại ta được: \(\frac{1}{x}+\frac{2}{y}+\frac{1}{z}=\frac{5}{12}\)
Thay (4) vào ta được: \(\frac{1}{y}+\frac{1}{12}=\frac{5}{12}\Leftrightarrow\frac{1}{y}=\frac{1}{3}\Rightarrow y=3\)
Từ đó ta dễ dàng tính được: \(\hept{\begin{cases}\frac{1}{x}=\frac{7}{12}-\frac{1}{3}=\frac{1}{4}\\\frac{1}{z}=-\frac{1}{6}-\frac{1}{3}=-\frac{1}{2}\end{cases}}\Rightarrow\hept{\begin{cases}x=4\\z=-2\end{cases}}\)
Vậy \(\left(x;y;z\right)=\left(4;3;-2\right)\)
Bài này chỉ có min, không có max của A nhé bạn
Muốn có max thì x;y;z phải không âm