Cho A=1+2+22+23+...+29 ; B=5.28 .Hãy so sánh A và B
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/
Tổng A là tổng các số hạng cách đều nhau 4 đơn vị.
Số số hạng: $(101-1):4+1=26$
$A=(101+1)\times 26:2=1326$
2/
$B=(1+2+2^2)+(2^3+2^4+2^5)+(2^6+2^7+2^8)+(2^9+2^{10}+2^{11})$
$=(1+2+2^2)+2^3(1+2+2^2)+2^6(1+2+2^2)+2^9(1+2+2^2)$
$=(1+2+2^2)(1+2^3+2^6+2^9)$
$=7(1+2^3+2^6+2^9)\vdots 7$
\(S=1+2+2^2+2^3+...+2^9\)
Đặt \(2S=2+2^2+2^3+2^4+...+2^{10}\)
\(2S-S=2^{10}-1\) hay \(S=2^{10}-1< 2^{10}\)
\(\Rightarrow\) \(2^{10}=2^2.2^8< 5.2^8\)
Vậy \(S< 5.2^8\)
\(#Tuyết\)
2S=2+2^2+...+2^10
=>S=2^10-1=1023
5*2^8=256*5=1280
=>S<5*2^8
a) Đặt: \(A=1+2^2+2^3+...+2^{10}\)
\(\Rightarrow2A=2\left(1+2^2+2^3+...+2^9+2^{10}\right)\)
\(\Rightarrow2A=2+2^3+2^4+...+2^{10}+2^{11}\)
\(\Rightarrow2A-A=\left(2+2^3+2^4+...+2^{10}+2^{11}\right)-\left(1+2^2+2^3+...+2^{10}\right)\)
\(\Rightarrow A=\left(2^3-2^3\right)+\left(2^4-2^4\right)+...+\left(2-1\right)+\left(2^{11}-2^2\right)\)
\(\Rightarrow A=0+0+...+1+\left(2^{11}-2^2\right)\)
\(\Rightarrow A=1+2^{11}-2^2=1+2048-4=2045\)
Vậy: \(1+2^2+2^3+...+2^{10}=2045\)
b)
a] \(60-3\left(x-1\right)=2^3\cdot3\)
\(\Rightarrow60-3\left(x-1\right)=24\)
\(\Rightarrow3\left(x-1\right)=36\)
\(\Rightarrow x-1=12\)
\(\Rightarrow x=13\)
b] \(\left(3x-2\right)^3=2\cdot2^5\)
\(\Rightarrow\left(3x-2\right)^3=2^6\)
\(\Rightarrow\left(3x-2\right)^3=\left(2^2\right)^3\)
\(\Rightarrow3x-2=2^2\)
\(\Rightarrow3x=6\)
\(x=2\)
c] \(5^{x+1}-5^x=500\)
\(\Rightarrow5^x\left(5-1\right)=500\)
\(\Rightarrow5^x\cdot4=500\)
\(\Rightarrow5^x=125\)
\(\Rightarrow5^x=5^3\)
\(\Rightarrow x=3\)
d] \(x^2=x^4\)
\(\Rightarrow x=x^2\)
\(\Rightarrow x-x^2=0\)
\(\Rightarrow x\left(1-x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\1-x=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Ta có:
A = 2 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210
= (2 + 22) + (23 + 24) + (25 + 26) + (27 + 28) + (29 + 210)
= 2 . (1 + 2) + 23 . (1 + 2) + 25 . (1 + 2) + 27 . (1 + 2) + 29 . (1 + 2)
= 2 . 3 + 23 . 3 + 25 . 3 + 27 . 3 + 29 . 3
= 3 . (2 + 23 + 25 + 27 + 29)
Vậy A ⋮ 3
S=1+2+22+...+29�=1+2+22+...+29
2S=2(1+2+22+...+210)2�=2(1+2+22+...+210)
2S=2+22+23+...+292�=2+22+23+...+29
2S−S=(2+22+23+...+210)−(1+2+22+...+29)2�−�=(2+22+23+...+210)−(1+2+22+...+29)
\(S=2^{10}-1=2^2.2^8-1=4.2^8-1
HT
S=1+2+22+...+29�=1+2+22+...+29
2S=2(1+2+22+...+210)2�=2(1+2+22+...+210)
2S=2+22+23+...+292�=2+22+23+...+29
2S−S=(2+22+23+...+210)−(1+2+22+...+29)2�−�=(2+22+23+...+210)−(1+2+22+...+29)
\(S=2^{10}-1=2^2.2^8-1=4.2^8-1
A = 2 + 22 + 23 + ... + 210 (10 số hạng)
= (2 + 22) + (23 + 24) + ... + (29 + 210) (5 cặp số)
= 2(1 + 2) + 23(1 + 2) + ... + 29(1 + 2)
= (1 + 2)(2 + 23 + ... + 29)
= 3(2 + 23 + ... + 29) \(⋮\)3
=> A \(⋮\)3
Có vì mỗi số hạng của tổng đều chia hết cho 2 do là lũy thừa của 2
tổng trên chia hết cho 2 vì mỗi số hạng ở tổng trên đều chia hết cho 2
a) số số hạng là : ( 29 - 21 ) : 1 + 1 = 9 ( số số hạng )
tổng là : ( 29 + 21 ) x 9 : 2 = 225
b) số số hạng là : ( 9 - 1 ) : 1 + 1 = 9 ( số số hạng )
tổng là : ( 9 + 1 ) x 9 : 2 = 45
Dễ thôi em ạ
a. 21+ 22 + 23+ ...+ 27 +28 + 29 =
( 21 + 29 )+ ( 22 + 28 ) + ( 23 + 27 ) + ( 24 + 26 ) + 25
= 50 . 4 + 25
= 200 + 25
= 225
b. 1+2 +3 +...+ 7+8+9 =
Tương tự câu trên em ạ
A=210-1<210+28=22.28+1.28=(22+1).28=5.28=B
=>A<B
mkkhoong hỉu