K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2015

kho qua          

14 tháng 7 2016

Ta có:

A-B=2m^3+3m^3-4mn^2

TH1

Nếu m > n. Đặt m=n+x

óA-B=2(n+x)^3+3m^3-4(n+x)n^2

óA-B=2(n^3+3n^2x+2nx^2+x^3)=3m^3-4n^3-4n^2x

óA-B=n^3+2n^2x+6nx^2+2x^3>0

Vậy A>B

TH2                     

Nếu m < n. Đặt n=m+y

óA-B=2m^3+3(m+y)^3-4m(m+y)^2

óA-B=2m^3+3(m^3+3m^2y+3my^2+y^3)-4m^3-8m^2y-4my^2

óA-B=m^3+m^2y+5my^2+3y^3> 0

Vậy A > B

27 tháng 9 2019

Xét trường hợp thoy:))

Xét \(m>n\).Đặt \(m=n+k\) với \(k\in N\)

Xét \(A-B=2m^3+3n^3-4mn^2\)

\(A-B=2\left(n+k\right)^3+3n^3-4\left(n+k\right)n^2\)

\(A-B=2n^3+6n^2k+6nk^2+2k^3+3n^3-4n^3-4n^2k\)

\(A-B=n^3+2n^2k+6nk^2+2k^3>0\)

Xét \(m< n\).Đặt \(n=m+k\)

Ta có:

\(A-B=2m^3+3n^3-4mn^2\)

\(A-B=2m^3+3\left(m+k\right)^3-4m\left(m+k\right)^2\)

\(A-B=2m^3+3m^3+9m^2k+9mk^2+3k^3-4m^3-8m^2k-4mk^2\)

\(A-B=m^3+m^2k+5mk^2+3k^2>0\)

Xét \(m=n\)

Ta có:

\(A=2m^3+3n^3=2m^3+3m^3=5m^3\)

\(B=4mn^2=4mm^2=4m^3\)

\(\Rightarrow A>B\)

Vậy \(A>B\) 

28 tháng 3 2021

a, Có\(\frac{3n+2}{n}=3+\frac{2}{n}\)

Vì \(3\inℤ\)=> Để \(a\inℤ\)thì \(\frac{2}{n}\inℤ\)<=> \(n\in U\left(2\right)=\left\{\pm1;\pm2\right\}\)

b, Có

\(\frac{a+n}{b+n}=1-\frac{b-a}{b+n}\)

\(\frac{a}{b}=1-\frac{b-a}{b}\)

\(b+n\ge b\)=> \(\frac{b-a}{b+n}\le\frac{b-a}{b}\)=> \(1-\frac{b-a}{b+n}\ge1-\frac{b-a}{b}\)=> \(\frac{a+n}{b+n}\ge\frac{a}{b}\)

3 tháng 4 2015

A = n/2n+1 = 3n / 6n+3 < 3n+1/6n+3 = B

=> A < B