K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2017

Đáp án B

25 tháng 6 2018

1 tháng 9 2019

Đáp án B

Ta có  u n = u n u n + 2

⇔ 1 u n = u n + 2 u n = 1 + 2 u n

 

Đặt  v n = 1 u n ⇒ v 1 = 1 v n = 1 + 2 v n - 1

⇒ v n = 2 n - 1 ⇒ u n = 1 2 n - 1

15 tháng 12 2017

Đáp án B

u1=-1

u2=-1+3=2

u3=2+3=5

u4=5+3=8

u5=8+3=11

Công thức tổng quát là: \(U_n=U_1+\left(n-1\right)\cdot\left(3\right)=-1+3n-3=3n-4\)

3 tháng 12 2018

Đáp án A

28 tháng 7 2018

Đáp án C

23 tháng 12 2021

\(u_{n+1}=\sqrt{1+u_n^2}\left(1\right)\)

\(u_1=3=\sqrt{9}\)

\(u_2=\sqrt{1+u_1^2}=\sqrt{10}\)

\(u_3=\sqrt{1+u_2^2}=\sqrt{11}\)

...

Dự đoán công thức:\(u_n=\sqrt{n+8}\),\(n\ge1\) (*)

Thật vậy 

+)\(n=1,(*)\)\(\Leftrightarrow u_1=3\) (lđ)

+)Giả sử (*) đúng với mọi \(n=k,k>1\)

\((*)\Leftrightarrow u_k=\sqrt{k+8}\)

+)\(n=k+1,\) thay vào (1) có: \(u_{k+2}=\sqrt{1+u^2_{k+1}}=\sqrt{1+\left(\sqrt{1+u_k^2}\right)^2}=\sqrt{2+u^2_k}=\sqrt{2+k+8}=\sqrt{10+k}\)

\(\Rightarrow\)(*) đúng với n=k+1

Vậy CTSHTQ: \(u_n=\sqrt{n+8}\)\(n\ge1\)

NV
29 tháng 3 2021

Đặt \(u_n=v_n+1\Rightarrow v_{n+1}+1=\dfrac{2017+v_n+1}{2019-\left(v_n+1\right)}=\dfrac{2018+v_n}{2018-v_n}\)

\(\Rightarrow v_{n+1}=\dfrac{2018+v_n}{2018-v_n}-1=\dfrac{2v_n}{2018-v_n}\Rightarrow\dfrac{1}{v_{n+1}}=1009\dfrac{1}{v_n}-\dfrac{1}{2}\)

Đặt \(\dfrac{1}{v_n}=x_n\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{1}{v_1}=\dfrac{1}{u_1-1}=1\\x_{n+1}=1009x_n-\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow x_{n+1}-\dfrac{1}{2016}=1009\left(x_n-\dfrac{1}{2016}\right)\)

\(\Rightarrow x_n-\dfrac{1}{2016}\) là CSN với công bội 1009 \(\Rightarrow x_n-\dfrac{1}{2016}=\dfrac{2015}{2016}.1009^{n-1}\)

\(\Rightarrow x_n=\dfrac{2015}{2016}1009^{n-1}+\dfrac{1}{2016}\) 

\(\Rightarrow u_n=v_n+1=\dfrac{1}{x_n}+1=\dfrac{2016}{2015.1009^{n-1}+1}+1\)

\(\Rightarrow\lim\left(u_n\right)=1\)

29 tháng 3 2021

Có thể đặt \(u_n=v_n+2017\) nữa bác nhỉ, bác có công thức tổng quát tìm t không ạ: \(u_n=v_n+t\).