Cho hai đa thức f ( x ) = x 5 + 2 ; g ( x ) = 5 x 3 - 4 x + 2
So sánh f(0) và g(1)
A. f(0) = g(1)
B. f(0) > g(1)
C. f(0) < g(1)
D. f(0) ≥ g(1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f(-1)=1+4-5=0
f(5)=25-20-5=0
Do đó: x=-1; x=5 là các nghiệm của f(x)
Ta có \(f\left(-1\right)=1+4-5=0\)
Vậy x = -1 là nghiệm đa thức trên
\(f\left(5\right)=25-20-5=0\)
Vậy x = 5 là nghiệm đa thức trên
Đặt \(f\left(x\right)=0\)
\(\Leftrightarrow x^2-4x-5=0\)
\(\Leftrightarrow x^2+x-5x-5=0\)
\(\Leftrightarrow x\left(x+1\right)-5\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-5\right)=0\)
\(\rightarrow\left[{}\begin{matrix}x+1=0\\x-5=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=5\end{matrix}\right.\)
--> hai nghiệm \(x=-1;x=5\) là hai nghiệm của đa thức \(f\left(x\right)\)
đặt f(x) = 0
\(\Leftrightarrow x^2-4x-5=0\\ \Leftrightarrow x^2+x-5x-5=0\\ \Leftrightarrow x\left(x+1\right)-5\left(x+1\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-5=0\\x+1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)
Vậy x = 5 và x = -1 là 2 nghiệm của f(x)
Bài 1
Gợi ý bạn làm : Bạn thay \(x=-4;x=-3;x=0;x=1\) vào \(f\left(x\right);g\left(x\right)\)
\(\Rightarrow\) Nếu kết quả ra giống nhau thì là nghiệm , ra khác nhau thì không là nghiệm
VD : Thay \(x=-4\) vào \(f\left(x\right)\) và \(g\left(x\right)\)
\(f\left(-4\right)=4.\left(-4\right)^4-5\left(-4\right)^3+3.\left(-4\right)+2=1334\)
\(g\left(x\right)=-4.\left(-4\right)^4+5\left(-4\right)^3+7=-1337\)
Ra hai kết quả khác nhau
\(\Rightarrow x=-4\) không là nghiệm
Bài 2
\(f\left(x\right)-g\left(x\right)=\left(-x^5+3x^2+4x+8\right)-\left(-x^5-3x^2+4x+2\right)\\ =-x^5+3x^2+4x+8+x^5+3x^2-4x-2\\ =\left(-x^5+x^5\right)+\left(3x^2+3x^2\right)+\left(4x-4x\right)+\left(8-2\right)\\ =6x^2+6\\ =x^2+1\\ =x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\\ =\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
\(\Rightarrow\) phương trình vô nghiệm
Ta có f(x)=0 <=> \(\left(x-1\right)\left(x+2\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Vì nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x) nên 1 và -2 là nghiệm của đa thức g(x)
+Thay x=1, ta có: \(g\left(1\right)=1^3+a.1^2+b.1+2=0\Leftrightarrow1+a+b+2=0\Leftrightarrow a+b=-3\left(1\right)\)
+Thay x=-2, ta có:
\(g\left(-2\right)=\left(-2\right)^3+a.2^2+b.\left(-2\right)+2=0\Leftrightarrow-8+4a-2b+2=0\Leftrightarrow4a-2b=6\left(2\right)\)
Từ (1) và (2) ta có hệ pt: \(\left\{{}\begin{matrix}a+b=-3\\4a-2b=6\end{matrix}\right.\)
Giải hệ pt, ta được: a=0, b=-3.
Ta có : f(x) = 0
⇔ ( x-1)(x+2) = 0
⇔ \(\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Vì nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x) nên x =1 hoặc x = -2 là nghiệm của g(x)
Thay x = 1 vào g(x) = 0
⇔ 13 + a.12 + b.1 + 2 = 0
⇔ 1 + a + b + 2 = 0
⇔ a + b = -3 (1)
Thay x = -2 vào g(x) = 0
⇔ (-2)3 + a.(-2)2 + b.(-2) + 2 = 0
⇔ -8 + a.4 - 2.b + 2 = 0
⇔ 4a - 2b = 6
⇔ 2.(2a - b ) = 6
⇔ 2a - b = 3 (2)
Từ (1) và (2) ⇒ \(\left\{{}\begin{matrix}a+b=-3\\2a-b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a=0\\b=-3-a\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}a=0\\b=-3\end{matrix}\right.\)
Thay x = -1; x = 5 vào đa thức f(x) = x2 – 4x – 5, ta có:
f(-1) = (-1)2 – 4.(-1) – 5 = 1 + 4 – 5 = 0
f(5) = 52 – 4.5 – 5 = 25 – 20 – 5 = 0
Vậy x = -1 và x = 5 là các nghiệm của đa thức f(x) = x2 – 4x – 5
Thay x = 0 vào f ( x ) = x 5 + 2 ta có f ( 0 ) = 0 5 + 2 = 2
Thay x = 1 vào g ( x ) = 5 x 3 - 4 x + 2 ta được g ( 1 ) = 5 . 1 3 - 4 . 1 + 2 = 3
Suy ra f(0) < g(1) (do 2 < 3)
Chọn đáp án C